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The goal for this chapter is to present the background and specific analysis techniques
needed to construct a statistical model that describes a particular scientific or
engineering process. The types of models discussed in this chapter are limited to those
based on an explicit mathematical function. These types of models can be used for
prediction of process outputs, for calibration, or for process optimization.

1. Introduction 2. Assumptions
1. Definition 1. Assumptions
2. Terminology
3. Uses
4. Methods
3. Design 4. Analysis
1. Definition 1. Modeling Steps
2. Importance 2. Model Selection
3. Design Principles 3. Modd Fitting
4. Optimal Designs 4. Model Validation
5. Assessment 5. Model Improvement
5. Interpretation & Use 6. Case Studies
1. Prediction 1. Load Cell Output
2. Calibration 2. Alaska Pipeline
3. Optimization 3. Ultrasonic Reference Block

4. Thermal Expansion of Copper

Detailed Table of Contents: Process Modeling

References: Process Modeling

Appendix: Some Useful Functions for Process Modeling

http://www.itl.nist.gov/div898/handbook/pmd/pmd.htm (1 of 2) [11/14/2003 5:49:51 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/index.htm

4. Process Modeling

NIST
SEMATECH

[HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]

http://www.itl.nist.gov/div898/handbook/pmd/pmd.htm (2 of 2) [11/14/2003 5:49:51 PM]


http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/

4. Process Modeling

P ENGINEERING STATISTICS HANDBOOK

HOME TOOLS & AIDS |[SEARCH [BACK NEXT]|

4. Process Modeling - Detailed Table of
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The goal for this chapter is to present the background and specific analysis techniques needed to
construct a statistical model that describes a particular scientific or engineering process. The types
of models discussed in this chapter are limited to those based on an explicit mathematical
function. These types of models can be used for prediction of process outputs, for calibration, or
for process optimization.

1. Introduction to Process Modeling [4.1.]
1. What is process modeling? [4.1.1.]
2. What terminology do statisticians use to describe process models? [4.1.2.]
3. What are process models used for? [4.1.3.]
1. Estimation [4.1.3.1.]
2. Prediction [4.1.3.2]
3. Cdlibration [4.1.3.3/]
4. Optimization [4.1.3.4.]
4. What are some of the different statistical methods for model building? [4.1.4.]
1. Linear Least Squares Regression [4.1.4.1]
2. Nonlinear Least Squares Regression [4.1.4.2.]
3. Weighted L east Squares Regression [4.1.4.3.]
4. LOESS (aka LOWESS) [4.1.4.4.]

2. Underlying Assumptions for Process Modeling [4.2.]
1. What are the typical underlying assumptionsin process modeling? [4.2.1.]
1. Theprocessisastatistical process. [4.2.1.1]

The means of the random errors are zero. [4.2.1.2.]

The random errors have a constant standard deviation. [4.2.1.3]
The random errors follow a normal distribution. [4.2.1.4.]

The data are randomly sampled from the process. [4.2.1.5.]
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6. The explanatory variables are observed without error. [4.2.1.6.]

3. Data Callection for Process Modeling [4.3.]
1. What isdesign of experiments (aka DEX or DOE)? [4.3.1.]
2. Why is experimental design important for process modeling? [4.3.2.]

3. What are some general design principles for process modeling? [4.3.3]

4. |'ve heard some people refer to "optimal" designs, shouldn't | use those? [4.3.4.]

5. How can | tell if aparticular experimental design is good for my
application? [4.3.5.]

4. Data Analysisfor Process Modeling [4.4.]
1. What are the basic steps for developing an effective process model? [4.4.1.]
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2. How can | detect non-constant variation across the data? [4.4.4.2.]
3. How can | tell if there was drift in the measurement process? [4.4.4.3.]
4

. How can | assess whether the random errors are independent from one to the
next? [4.4.4.4.]

5. How can | test whether or not the random errors are distributed
normally? [4.4.4.5]

6. How can | test whether any significant terms are missing or misspecified in the
functional part of the model? [4.4.4.6.]

7. How can | test whether all of the terms in the functional part of the model are

necessary? [4.4.4.7.]
5. If my current model does not fit the data well, how can | improveit? [4.4.5.]

1. Updating the Function Based on Residual Plots [4.4.5.1.]
2. Accounting for Non-Constant Variation Across the Data [4.4.5.2.]
3. Accounting for Errors with a Non-Normal Distribution [4.4.5.3.]
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How do | estimate the average response for a particular set of predictor
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How can | predict the value and and estimate the uncertainty of asingle
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4. Process Modeling

4.1.Introduction to Process Modeling

Overviewof  Thegoal for this section isto give the big picture of function-based

Section 4.1 process modeling. This includes a discussion of what process modeling
IS, the goals of process modeling, and a comparison of the different
statistical methods used for model building. Detailed information on
how to collect data, construct appropriate models, interpret output, and
use process modelsis covered in the following sections. The final
section of the chapter contains case studies that illustrate the genera
information presented in the first five sections using data from a variety
of scientific and engineering applications.

Contents of 1. What is process modeling?
Section 4.1 2. What terminology do statisticians use to describe process models?
3. What are process models used for?
1. Estimation
2. Prediction
3. Cdlibration
4. Optimization
4. What are some of the statistical methods for model building?
1. Linear Least Squares Regression

2. Nonlinear Least Squares Regression
3. Weighted L east Squares Regression
4. LOESS (aka LOWESS)
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4.1. Introduction to Process Modeling

4.1.1.What is process modeling?

Basic
Definition

Example

Graphical
Interpretation

Process modeling is the concise description of the total variation in one quantity, y, by
partitioning it into
1. adeterministic component given by a mathematical function of one or more other
guantities, 1, T2, plus

2. arandom component that follows a particular probability distribution.

For example, the total variation of the measured pressure of afixed amount of agasin atank can
be described by partitioning the variability into its deterministic part, which is a function of the
temperature of the gas, plus some left-over random error. Charles Law states that the pressure of
agasis proportional to its temperature under the conditions described here, and in this case most
of the variation will be deterministic. However, due to measurement error in the pressure gauge,
the relationship will not be purely deterministic. The random errors cannot be characterized
individualy, but will follow some probability distribution that will describe the relative
frequencies of occurrence of different-sized errors.

Using the example above, the definition of process modeling can be graphically depicted like
this:
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The top left plot in the figure shows pressure data that vary deterministically with temperature
except for asmall amount of random error. The relationship between pressure and temperature is
astraight line, but not a perfect straight line. The top row plots on the right-hand side of the
equals sign show a partitioning of the data into a perfect straight line and the remaining
"unexplained” random variation in the data (note the different vertical scales of these plots). The
plots in the middle row of the figure show the deterministic structure in the data again and a
histogram of the random variation. The histogram shows the rel ative frequencies of observing

different-sized random errors. The bottom row of the figure shows how the relative frequencies of
the random errors can be summarized by a (normal) probability distribution.

Of course, the straight-line example is one of the simplest functions used for process modeling.
Another example is shown below. The concept isidentical to the straight-line example, but the
structure in the data is more complex. The variation in y; is partitioned into a deterministic part,
which isafunction of another variable, , plus some left-over random variation. (Again note the
difference in the vertical axis scales of the two plotsin the top right of the figure.) A probability
distribution describes the leftover random variation.
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An Example The examples of process modeling shown above have only one explanatory variable but the

with Multiple  concept easily extends to cases with more than one explanatory variable. The three-dimensional
Explanatory perspective plots below show an example with two explanatory variables. Examples with three or
Variables more explanatory variables are exactly analogous, but are difficult to show graphically.
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4. Process Modeling
4.1. Introduction to Process Modeling

4.1.2.What terminology do statisticians use
to describe process models?

Model There are three main parts to every process model. These are
Components 1. theresponse variable, usually denoted by 7,

2. the mathematical function, usually denoted as f {f; 3:] and

3. therandom errors, usually denoted by &.

Form of The genera form of the model is
Model

v=f(7.5) +¢

All process models discussed in this chapter have this general form. As
alluded to earlier, the random errors that are included in the model make
the relationship between the response variable and the predictor
variables a"statistical" one, rather than a perfect deterministic one. This
Is because the functional relationship between the response and
predictors holds only on average, not for each data point.

Some of the details about the different parts of the model are discussed
below, along with alternate terminology for the different components of

the model.
Response The response variable, yy, isaquantity that variesin away that we hope
Variable to be able to summarize and exploit via the modeling process. Generally

it is known that the variation of the response variable is systematically
related to the values of one or more other variables before the modeling
process is begun, athough testing the existence and nature of this
dependence is part of the modeling process itself.
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4.1.2. What terminology do statisticians use to describe process models?

Mathematical
Function

The mathematical function consists of two parts. These parts are the
predictor variables, x|, r, . . ., and the parameters, 3y, 3, .. .. The
predictor variables are observed along with the response variable. They
are the quantities described on the previous page as inputs to the

mathematical function, f (f; 3') The collection of al of the predictor
variablesis denoted by T for short.

fE [:Il,Ig,...:]

The parameters are the quantities that will be estimated during the
modeling process. Their true values are unknown and unknowable,
except in simulation experiments. As for the predictor variables, the

collection of all of the parameters is denoted by ;3 for short.

g - !
L0 Mo )

E
I

The parameters and predictor variables are combined in different forms
to give the function used to describe the deterministic variation in the
response variable. For a straight line with an unknown intercept and
slope, for example, there are two parameters and one predictor variable

o U L =
Jlr, 0) = og+ vz

For a straight line with a known slope of one, but an unknown intercept,
there would only be one parameter

f'[l"j) =0+

For a quadratic surface with two predictor variables, there are six
parameters for the full model.

—

R Ay = 3 = e e w SR =
FlrB) = Gp 4+ 51Xy + O2Xa + O12X1 X2 + P11 1) + Ooak

k3 B3
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Random
Error

Alternate
Terminology

Scope of
"Model"
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Like the parametersin the mathematical function, the random errors are
unknown. They are ssmply the difference between the data and the
mathematical function. They are assumed to follow a particular
probability distribution, however, which is used to describe their
aggregate behavior. The probability distribution that describes the errors
has a mean of zero and an unknown standard deviation, denoted by ¢,
that is another parameter in the model, like the (3's.

Unfortunately, there are no completely standardardized names for the
parts of the model discussed above. Other publications or software may
use different terminology. For example, another common name for the
response variable is "dependent variable". The response variableis aso
simply called "the response” for short. Other names for the predictor
variables include "explanatory variables’, "independent variables’,
"predictors’ and "regressors’. The mathematical function used to
describe the deterministic variation in the response variable is sometimes
called the "regression function”, the "regression equation”, the
"smoothing function", or the "smooth".

In its correct usage, the term "model" refers to the equation above and

a so includes the underlying assumptions made about the probability
distribution used to describe the variation of the random errors. Often,
however, people will also use the term "model" when referring
specifically to the mathematical function describing the deterministic
variation in the data. Since the function is part of the model, the more
limited usage is not wrong, but it isimportant to remember that the term
"model" might refer to more than just the mathematical function.
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4. Process Modeling
4.1. Introduction to Process Modeling

4.1.3.What are process models used for?

Three Main Process models are used for four main purposes:
Purposes 1. estimation,

2. prediction,

3. calibration, and

4. optimization.

The rest of this page lists brief explanations of the different uses of
process models. More detailed explanations of the uses for process
models are given in the subsections of this section listed at the bottom
of this page.

Estimation The goal of estimation is to determine the value of the regression
function (i.e., the average value of the response variable), for a
particular combination of the values of the predictor variables.
Regression function values can be estimated for any combination of
predictor variable values, including values for which no data have been
measured or observed. Function values estimated for points within the
observed space of predictor variable values are sometimes called
interpolations. Estimation of regression function values for points
outside the observed space of predictor variable values, called
extrapolations, are sometimes necessary, but require caution.

Prediction The goal of prediction isto determine either
1. the value of anew observation of the response variable, or

2. the values of a specified proportion of all future observations of
the response variable

for a particular combination of the values of the predictor variables.
Predictions can be made for any combination of predictor variable
values, including values for which no data have been measured or
observed. Asin the case of estimation, predictions made outside the
observed space of predictor variable values are sometimes necessary,
but require caution.

http://www.itl. nist.gov/div898/handbook/pmd/section1/pmd13.htm (1 of 2) [11/14/2003 5:50:15 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

4.1.3. What are process models used for?

Calibration The goal of calibration isto quantitatively relate measurements made
using one measurement system to those of another measurement system.
Thisis done so that measurements can be compared in common units or
to tie results from a relative measurement method to absol ute units.

Optimization ~ Optimization is performed to determine the values of process inputs that
should be used to obtain the desired process output. Typical
optimization goals might be to maximize the yield of a process, to
minimize the processing time required to fabricate a product, or to hit a
target product specification with minimum variation in order to
maintain specified tolerances.

Further 1. Estimation
Details 2. Prediction
3. Cdlibration
4. Optimization
NIST . .
0 TOOLS & AIDS SEARCH BACK MNEXT
SEMATECH Home oot ! '
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4, Process Modeling
4.1. Introduction to Process Modeling
4.1.3. What are process models used for?

4.1.3.1. Estimation

More on As mentioned on the preceding page, the primary goal of estimation isto determine the value of
Estimation the regression function that is associated with a specific combination of predictor variable values.

The estimated values are computed by plugging the value(s) of the predictor variable(s) into the
regression equation, after estimating the unknown parameters from the data. This processis

illustrated below using the Pressure/Temperature example from afew pages earlier.

Example Suppose in this case the predictor variable value of interest is atemperature of 47 degrees.
Computing the estimated value of the regression function using the equation

P = 7.740605 + 2.030123T

yields an estimated average pressure of 192.4655.
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Of coursg, if the pressure/temperature experiment were repeated, the estimates of the parameters
of the regression function obtained from the data would differ slightly each time because of the
randomness in the data and the need to sample alimited amount of data. Different parameter
estimates would, in turn, yield different estimated values. The plot below illustrates the type of
slight variation that could occur in arepeated experiment.
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A critical part of estimation is an assessment of how much an estimated value will fluctuate due
to the noise in the data. Without that information there is no basis for comparing an estimated
value to atarget value or to another estimate. Any method used for estimation should include an
assessment of the uncertainty in the estimated value(s). Fortunately it is often the case that the
data used to fit the model to a process can aso be used to compute the uncertainty of estimated
values obtained from the model. In the pressure/temperature example a confidence interval for the
value of the regresion function at 47 degrees can be computed from the data used to fit the model.
The plot below shows a 99% confidence interval produced using the original data. Thisinterval
gives the range of plausible values for the average pressure for atemperature of 47 degrees based
on the parameter estimates and the noise in the data.
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Length of Because the confidence interval is an interval for the value of the regression function, the
Confidence  uncertainty only includes the noise that isinherent in the estimates of the regression parameters.
Intervals The uncertainty in the estimated value can be |less than the uncertainty of a single measurement

from the process because the data used to estimate the unknown parametersis essentially
averaged (in away that depends on the statistical method being used) to determine each
parameter estimate. This"averaging” of the data tends to cancel out errors inherent in each
individual observed data point. The noise in the this type of result is generally less than the noise
in the prediction of one or more future measurements, which must account for both the

uncertainty in the estimated parameters and the uncertainty of the new measurement.

More Info For more information on the interpretation and computation confidence, intervals see Section 5.1
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4, Process Modeling
4.1. Introduction to Process Modeling
4.1.3. What are process models used for?

4.1.3.2.Prediction

More on As mentioned earlier, the goal of prediction isto determine future value(s) of the response

Prediction  variable that are associated with a specific combination of predictor variable values. Asin
estimation, the predicted values are computed by plugging the value(s) of the predictor variable(s)
into the regression equation, after estimating the unknown parameters from the data. The
difference between estimation and prediction arises only in the computation of the uncertainties.
These differences areillustrated below using the Pressure/Temperature example in parallel with
the example illustrating estimation.

Example Suppose in this case the predictor variable value of interest is atemperature of 47 degrees.
Computing the predicted value using the equation

P = 7.7406095 + 2.030123T

yields a predicted pressure of 192.4655.
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Of coursg, if the pressure/temperature experiment were repeated, the estimates of the parameters
of the regression function obtained from the data would differ slightly each time because of the
randomness in the data and the need to sample alimited amount of data. Different parameter
estimates would, in turn, yield different predicted values. The plot below illustrates the type of
slight variation that could occur in arepeated experiment.
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a Repeated
Experiment

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd132.htm (2 of 5) [11/14/2003 5:50:16 PM]


http://www.itl.nist.gov/div898/handbook/pmd/section1/plots/pred1.gif

4.1.3.2. Prediction

Prediction
Uncertainty

99%
Prediction
Interval for
Pressure at
T=47

20 Pressure — 1926424

—l}

=47

Temperatune

I ' I ' [ ' I ' I ' [
20 30 40 50 60 TO
Temperatune

A critical part of prediction is an assessment of how much a predicted value will fluctuate due to
the noise in the data. Without that information there is no basis for comparing a predicted value to
atarget value or to another prediction. As aresult, any method used for prediction should include
an assessment of the uncertainty in the predicted value(s). Fortunately it is often the case that the
data used to fit the model to a process can also be used to compute the uncertainty of predictions
from the model. In the pressure/temperature example a prediction interval for the value of the
regresion function at 47 degrees can be computed from the data used to fit the model. The plot
below shows a 99% prediction interval produced using the original data. Thisinterval givesthe
range of plausible values for a single future pressure measurement observed at a temperature of
47 degrees based on the parameter estimates and the noise in the data.
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Because the prediction interval is an interval for the value of a single new measurement from the
process, the uncertainty includes the noise that is inherent in the estimates of the regression
parameters and the uncertainty of the new measurement. This means that the interval for a new
measurement will be wider than the confidence interval for the value of the regression function.
Theseintervals are called prediction intervals rather than confidence intervals because the latter
are for parameters, and a new measurement is arandom variable, not a parameter.

Like a prediction interval, atolerance interval brackets the plausible values of new measurements
from the process being modeled. However, instead of bracketing the value of asingle
measurement or afixed number of measurements, a tolerance interval brackets a specified
percentage of all future measurements for a given set of predictor variable values. For example, to
monitor future pressure measurements at 47 degrees for extreme values, either low or high, a
tolerance interval that brackets 98% of all future measurements with high confidence could be
used. If afuture value then fell outside of the interval, the system would then be checked to
ensure that everything was working correctly. A 99% tolerance interval that captures 98% of all
future pressure measurements at a temperature of 47 degreesis 192.4655 +/- 14.5810. This
interval iswider than the prediction interval for a single measurement because it is designed to
capture alarger proportion of all future measurements. The explanation of tolerance intervalsis
potentially confusing because there are two percentages used in the description of the interval.
One, in this case 99%, describes how confident we are that the interval will capture the quantity
that we want it to capture. The other, 98%, describes what the target quantity is, whichin this
case that is 98% of al future measurements at T=47 degrees.
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More Info For more information on the interpretation and computation of prediction and tolerance intervals,
see Section 5.1.
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4.1. Introduction to Process Modeling

4.1.3. What are process models used for?

4.1.3.3.Calibration

Moreon
Calibration

Example

As mentioned in the page introducing the different uses of process models, the goal of calibration
isto quantitatively convert measurements made on one of two measurement scales to the other
measurement scale. The two scales are generally not of equal importance, so the conversion
occurs in only one direction. The primary measurement scale is usually the scientifically relevant
scale and measurements made directly on this scale are often the more precise (relatively) than
measurements made on the secondary scale. A process model describing the relationship between
the two measurement scales provides the means for conversion. A process model that is
constructed primarily for the purpose of calibration is often referred to as a"calibration curve'. A
graphical depiction of the calibration processis shown in the plot below, using the example
described next.

Thermocouples are a common type of temperature measurement device that is often more
practical than athermometer for temperature assessment. Thermocouples measure temperature in
terms of voltage, however, rather than directly on atemperature scale. In addition, the response of
a particular thermocouple depends on the exact formulation of the metals used to construct it,
meaning two thermocouples will respond somewhat differently under identical measurement
conditions. As aresult, thermocouples need to be calibrated to produce interpretable measurement
information. The calibration curve for athermocouple is often constructed by comparing
thermocouple output to relatively precise thermometer data. Then, when a new temperature is
measured with the thermocouple, the voltage is converted to temperature terms by plugging the
observed voltage into the regression equation and solving for temperature.

The plot below shows a calibration curve for athermocouple fit with alocally quadratic model
using a method called LOESS. Traditionally, complicated, high-degree polynomia models have

been used for thermocouple calibration, but locally linear or quadratic models offer better
computational stability and more flexibility. With the locally quadratic model the solution of the
regression equation for temperature is done numerically rather than analytically, but the concept
of calibration isidentical regardless of which type of model isused. It isimportant to note that the
thermocouple measurements, made on the secondary measurement scale, are treated as the
response variable and the more precise thermometer results, on the primary scale, are treated as
the predictor variable because this best satisfies the underlying assumptions of the analysis.
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Just asin estimation or prediction, if the calibration experiment were repeated, the results would
vary dighly due to the randomness in the data and the need to sample alimited amount of data
from the process. This means that an uncertainty statement that quantifies how much the results
of aparticular calibration could vary due to randomness is necessary. The plot below shows what
would happen if the thermocouple calibration were repeated under conditions identical to the first
experiment.

Calibration
Result from
Repeated

Experiment
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Calibration Again, aswith prediction, the data used to fit the process model can also be used to determine the

Uncertainty uncertainty in the calibration. Both the variation in the estimated model parameters and in the
new voltage observation need to be accounted for. Thisis similar to uncertainty for the prediction
of anew measurement. In fact, calibration intervals are computed by solving for the predictor
variable value in the formulas for a prediction interval end points. The plot below shows a 99%
calibration interval for the original calibration data used in the first plot on this page. The area of
interest in the plot has been magnified so the endpoints of the interval can be visualy
differentiated. The calibration interval is 387.3748 +/- 0.307 degrees Celsius.
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In almost al calibration applications the ultimate quantity of interest is the true value of the
primary-scal e measurement method associated with a measurement made on the secondary scale.
As aresult, there are no analogs of the prediction interval or tolerance interval in calibration.

More Info More information on the construction and interpretation of calibration intervals can be found in
Section 5.2 of this chapter. There is also more information on calibration, especially "one-point”

calibrations and other special cases, in Section 3 of Chapter 2: Measurement Process
Characterization.
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4. Process Modeling

4.1. Introduction to Process Modeling

4.1.3. What are process models used for?

4.1.3.4.Optimization

More on
Optimization

Example

As mentioned earlier, the goal of optimization isto determine the necessary process input values
to obtain a desired output. Like calibration, optimization involves substitution of an output value
for the response variable and solving for the associated predictor variable values. The process
model is again the link that ties the inputs and output together. Unlike calibration and prediction,
however, successful optimization requires a cause-and-effect relationship between the predictors
and the response variable. Designed experiments, run in arandomized order, must be used to
ensure that the process model represents a cause-and-effect relationship between the variables.
Quadratic models are typically used, along with standard cal culus techniques for finding
minimums and maximums, to carry out an optimization. Other techniques can also be used,
however. The example discussed below includes a graphical depiction of the optimization
Process.

In a manufacturing process that requires a chemical reaction to take place, the temperature and
pressure under which the processis carried out can affect reaction time. To maximize the
throughput of this process, an optimization experiment was carried out in the neighborhood of the
conditions felt to be best, using a central composite design with 13 runs. Calculus was used to
determine the input values associated with local extremesin the regression function. The plot
below shows the quadratic surface that was fit to the data and conceptually how the input values
associated with the maximum throughput are found.
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Aswith prediction and calibration, randomness in the data and the need to sample data from the
process affect the results. If the optimization experiment were carried out again under identical

conditions, the optimal input values computed using the model would be slightly different. Thus,

it isimportant to understand how much random variability there isin the resultsin order to
interpret the results correctly.

Optimization
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Repeated
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Optimization ~ Aswith prediction and calibration, the uncertainty in the input values estimated to maximize

Uncertainty  throughput can also be computed from the data used to fit the model. Unlike prediction or
calibration, however, optimization almost always involves simultaneous estimation of several
quantities, the values of the process inputs. As aresult, we will compute ajoint confidence region
for al of the input values, rather than separate uncertainty intervals for each input. This
confidence region will contain the complete set of true process inputs that will maximize
throughput with high probability. The plot below shows the contours of equal throughput on a
map of various possible input value combinations. The solid contours show throughput while the
dashed contour in the center encloses the plausible combinations of input values that yield
optimum results. The "+" marks the estimated optimum value. The dashed region is a 95% joint
confidence region for the two process inputs. In this region the throughput of the process will be
approximately 217 units/hour.

http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd134.htm (3 of 4) [11/14/2003 5:50:16 PM]


http://www.itl.nist.gov/div898/handbook/pmd/section1/plots/opt2_f.gif

4.1.3.4. Optimization

Contour
Plot,
Estimated
Optimum & 2.
Confidence v ///aa w
Region
=
D_
=
D_
M
p
=
n &=
n M
o
=
ﬂ_
=
D_
0l
ra i
T | 1 | 1 | 1 |
25 50 75 100 125 150 175
Temperature
More Info Computational details for optimization are primarily presented in Chapter 5. Process
Improvement along with material on appropriate experimental designs for optimization. Section
5.5.3. specifically focuses on optimization methods and their associated uncertainties.
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4.1. Introduction to Process Modeling

4.1.4.What are some of the different

statistical methods for model
building?
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Methods

For many types of data analysis problems there are no more than a
couple of general approaches to be considered on the route to the
problem'’s solution. For example, there is often a dichotomy between
highly-efficient methods appropriate for data with noise from a normal
distribution and more general methods for data with other types of
noise. Within the different approaches for a specific problem type, there
are usually at most afew competing statistical tools that can be used to
obtain an appropriate solution. The bottom line for most types of data
analysis problemsis that selection of the best statistical method to solve
the problem is largely determined by the goal of the analysis and the
nature of the data.

Model building, however, is different from most other areas of statistics
with regard to method selection. There are more general approaches and
more competing techniques available for model building than for most
other types of problems. There is often more than one statistical tool that
can be effectively applied to a given modeling application. The large
menu of methods applicable to modeling problems means that thereis
both more opportunity for effective and efficient solutions and more
potential to spend time doing different analyses, comparing different
solutions and mastering the use of different tools. The remainder of this
section will introduce and briefly discuss some of the most popular and
well-established statistical techniques that are useful for different model
building situations.

1. Linear Least Squares Regression

2. Nonlinear L east Squares Regression
3. Weighted L east Squares Regression
4. LOESS (aka LOWESS)
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.4. What are some of the different statistical methods for model building?

4.1.4.1.Linear Least Squares Regression

Modeling Linear least squares regression is by far the most widely used
Workhorse modeling method. It is what most people mean when they say they

have used "regression”, "linear regression” or "least squares’ to fit a
model to their data. Not only is linear |east squares regression the
most widely used modeling method, but it has been adapted to a broad
range of situations that are outside its direct scope. It plays a strong
underlying role in many other modeling methods, including the other
methods discussed in this section: nonlinear |east squares regression,

welghted |least squares regression and L OESS.

Definitionofa | jgeq directly, with an appropriate data set, linear least squares

églf;:s‘eag regression can be used to fit the data with any function of the form
Model

f{f?.ﬁ) =0y + 5111+ Baxa+. ..

in which
1. each explanatory variable in the function is multiplied by an
unknown parameter,

2. thereisat most one unknown parameter with no corresponding
explanatory variable, and

3. dl of theindividual terms are summed to produce the final
function value.

In statistical terms, any function that meets these criteriawould be
called a"linear function”. The term "linear" is used, even though the
function may not be a straight line, because if the unknown parameters
are considered to be variables and the explanatory variables are
considered to be known coefficients corresponding to those
"variables’, then the problem becomes a system (usually
overdetermined) of linear equations that can be solved for the values
of the unknown parameters. To differentiate the various meanings of
theword "linear”, the linear models being discussed here are often
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4.1.4.1. Linear Least Squares Regression

said to be "linear in the parameters’ or "statistically linear".

Why "Least Linear least squares regression also gets its name from the way the
Squares'? estimates of the unknown parameters are computed. The "method of

least squares’ that is used to obtain parameter estimates was
independently developed in the late 1700's and the early 1800's by the
mathematicians Karl Friedrich Gauss, Adrien Marie Legendre and
(possibly) Robert Adrain [Stigler (1978)] [Harter (1983)] [Stigler
(1986)] working in Germany, France and America, respectively. In the
least squares method the unknown parameters are estimated by
minimizing the sum of the squared deviations between the data and
the model. The minimization process reduces the overdetermined
system of equations formed by the data to a sensible system of
(where p isthe number of parametersin the functional part of the
model) equationsin p unknowns. This new system of equationsis
then solved to obtain the parameter estimates. To learn more about
how the method of least squaresis used to estimate the parameters,

see Section 4.4.3.1.
Exampl es of Asjust mentioned above, linear models are not limited to being
Linear straight lines or planes, but include afairly wide range of shapes. For
Functions example, asimple quadratic curve
flx: 3 = 3+ B+ 3y

is linear in the statistical sense. A straight-line model in log/( )
f(l"j) = G+ 51 In(x]
or apolynomial in siu[:.r:l
flr: 3) = By + By sin(x) + Bysin(2x) + Basin(3z)

isalso linear in the statistical sense because they arelinear in the
parameters, though not with respect to the observed explanatory
variable, I.
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Nonlinear
Model
Example

Advantages of
Linear Least
Squares

Disadvantages
of Linear
Least Squares

Just as models that are linear in the statistical sense do not have to be
linear with respect to the explanatory variables, nonlinear models can
be linear with respect to the explanatory variables, but not with respect
to the parameters. For example,

Flz: ) = Bo + Bobuz

islinear in I, but it cannot be written in the general form of alinear
model presented above. Thisis because the slope of thislineis

expressed as the product of two parameters. As aresult, nonlinear
least squares regression could be used to fit this model, but linear least
squares cannot be used. For further examples and discussion of
nonlinear models see the next section, Section 4.1.4.2.

Linear least squares regression has earned its place as the primary tool
for process modeling because of its effectiveness and compl eteness.

Though there are types of data that are better described by functions
that are nonlinear in the parameters, many processes in science and
engineering are well-described by linear models. Thisis because
either the processes are inherently linear or because, over short ranges,
any process can be well-approximated by a linear model.

The estimates of the unknown parameters obtained from linear least
squares regression are the optimal estimates from a broad class of
possible parameter estimates under the usual assumptions used for
process modeling. Practically speaking, linear least squares regression
makes very efficient use of the data. Good results can be obtained
with relatively small data sets.

Finally, the theory associated with linear regression is well-understood
and allows for construction of different types of easily-interpretable
statistical intervals for predictions, calibrations, and optimizations.
These statistical intervals can then be used to give clear answersto
scientific and engineering questions.

The main disadvantages of linear least squares are limitationsin the
shapes that linear models can assume over long ranges, possibly poor
extrapolation properties, and sensitivity to outliers.
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Linear models with nonlinear terms in the predictor variables curve
relatively slowly, so for inherently nonlinear processes it becomes
increasingly difficult to find alinear model that fits the data well as
the range of the data increases. As the explanatory variables become
extreme, the output of the linear model will also always more extreme.
This means that linear models may not be effective for extrapolating
the results of a process for which data cannot be collected in the
region of interest. Of course extrapolation is potentially dangerous
regardless of the model type.

Finaly, while the method of |east squares often gives optimal
estimates of the unknown parameters, it isvery sensitive to the
presence of unusual data pointsin the data used to fit amodel. One or
two outliers can sometimes seriously skew the results of aleast
squares analysis. This makes model validation, especially with respect

to outliers, critical to obtaining sound answers to the questions
motivating the construction of the model.
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4.1. Introduction to Process Modeling

4.1.4. What are some of the different statistical methods for model building?

4.1.4.2.Nonlinear Least Squares

Extension of
Linear Least
Squares
Regression

Definition of a
Nonlinear
Regression
Model

Regression

Nonlinear |least squares regression extends linear least squares
regression for use with a much larger and more general class of
functions. Almost any function that can be written in closed form can
be incorporated in a nonlinear regression model. Unlike linear
regression, there are very few limitations on the way parameters can
be used in the functional part of a nonlinear regression model. The
way in which the unknown parameters in the function are estimated,
however, is conceptually the same asit isin linear least squares
regression.

As the name suggests, a nonlinear model is any model of the basic
form

y=f(7.38) +¢

in which
1. thefunctional part of the model is not linear with respect to the
unknown parameters, Jg, (34, . . ., and
2. the method of least squaresis used to estimate the values of the
unknown parameters.
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4.1.4.2. Nonlinear Least Squares Regression

Due to the way in which the unknown parameters of the function are
usually estimated, however, it is often much easier to work with
models that meet two additional criteria:

3. the function is smooth with respect to the unknown parameters,
and

4. theleast sguares criterion that is used to obtain the parameter
estimates has a unique solution.

These last two criteria are not essential parts of the definition of a
nonlinear least squares model, but are of practical importance.

Examples of Some examples of nonlinear models include:
Nonlinear
Models f(z: 5] _ GPo+ G
flz: 3) = 3,
flz 3) = 8y + 3, exp(—3ax)

FIZ:3) = Bysin(Bs + Baxy) + By cos(Bs + Fsx0)
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Advantages of
Nonlinear
Least Squares

Disadvantages
of Nonlinear
Least Squares

The biggest advantage of nonlinear least squares regression over many
other techniques is the broad range of functions that can be fit.
Although many scientific and engineering processes can be described
well using linear models, or other relatively ssimple types of models,
there are many other processes that are inherently nonlinear. For
example, the strengthening of concrete asit curesis anonlinear
process. Research on concrete strength shows that the strength
increases quickly at first and then levels off, or approaches an
asymptote in mathematical terms, over time. Linear models do not
describe processes that asymptote very well because for all linear
functions the function value can't increase or decrease at a declining
rate as the explanatory variables go to the extremes. There are many
types of nonlinear models, on the other hand, that describe the
asymptotic behavior of a process well. Like the asymptotic behavior
of some processes, other features of physical processes can often be
expressed more easily using nonlinear models than with simpler
model types.

Being a"least squares’ procedure, nonlinear least squares has some of
the same advantages (and disadvantages) that linear |east squares
regression has over other methods. One common advantage is
efficient use of data. Nonlinear regression can produce good estimates
of the unknown parameters in the model with relatively small data
sets. Another advantage that nonlinear least squares shares with linear
least squaresisafairly well-developed theory for computing
confidence, prediction and calibration intervals to answer scientific
and engineering questions. In most cases the probabilistic
interpretation of the intervals produced by nonlinear regression are
only approximately correct, but these intervals still work very well in
practice.

The major cost of moving to nonlinear least squares regression from
simpler modeling techniques like linear least squaresis the need to use
iterative optimization procedures to compute the parameter estimates.
With functions that are linear in the parameters, the least squares
estimates of the parameters can always be obtained analytically, while
that is generally not the case with nonlinear models. The use of
iterative procedures requires the user to provide starting values for the
unknown parameters before the software can begin the optimization.
The starting values must be reasonably close to the as yet unknown
parameter estimates or the optimization procedure may not converge.
Bad starting values can aso cause the software to convergeto alocal
minimum rather than the global minimum that defines the least
squares estimates.
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Disadvantages shared with the linear least squares procedure includes
astrong sensitivity to outliers. Just asin alinear least squares analysis,
the presence of one or two outliersin the data can seriously affect the
results of anonlinear analysis. In addition there are unfortunately
fewer model validation tools for the detection of outliersin nonlinear
regression than there are for linear regression.
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.4. What are some of the different statistical methods for model building?

4.1.4.3.Weighted Least Squares Regression

Handles One of the common assumptions underlying most process modeling methods, including linear
Cases Where and nonlinear least squares regression, is that each data point provides equally precise

Data Quality information about the deterministic part of the total process variation. In other words, the standard
Varies deviation of the error term is constant over all values of the predictor or explanatory variables.

This assumption, however, clearly does not hold, even approximately, in every modeling
application. For example, in the semiconductor photomask linespacing data shown below, it
appears that the precision of the linespacing measurements decreases as the line spacing
increases. In situations like this, when it may not be reasonabl e to assume that every observation
should be treated equally, weighted least squares can often be used to maximize the efficiency of
parameter estimation. Thisis done by attempting to give each data point its proper amount of
influence over the parameter estimates. A procedure that treats all of the data equally would give
less precisely measured points more influence than they should have and would give highly
precise pointstoo little influence.

Linespacing
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4.1.4.3. Weighted Least Squares Regression

Model Types
and Weighted
Least Squares

Advantages of
Weighted
Least Squares

Disadvantages
of Weighted
Least Squares

Futher
I nformation
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Unlike linear and nonlinear least squares regression, weighted least squares regression is not
associated with a particular type of function used to describe the relationship between the process
variables. Instead, weighted |east squares reflects the behavior of the random errorsin the mode!;
and it can be used with functions that are either linear or nonlinear in the parameters. It works by
incorporating extra nonnegative constants, or weights, associated with each data point, into the
fitting criterion. The size of the weight indicates the precision of the information contained in the
associated observation. Optimizing the weighted fitting criterion to find the parameter estimates
allows the weights to determine the contribution of each observation to the final parameter
estimates. It isimportant to note that the weight for each observation is given relative to the
weights of the other observations; so different sets of absolute weights can have identical effects.

Like all of the least squares methods discussed so far, weighted least squaresis an efficient
method that makes good use of small data sets. It also shares the ability to provide different types
of easily interpretable statistical intervals for estimation, prediction, calibration and optimization.
In addition, as discussed above, the main advantage that weighted least squares enjoys over other
methods is the ability to handle regression situations in which the data points are of varying
quality. If the standard deviation of the random errorsin the datais not constant across all levels
of the explanatory variables, using weighted least squares with weights that are inversely
proportional to the variance at each level of the explanatory variables yields the most precise
parameter estimates possible.

The biggest disadvantage of weighted least squares, which many people are not aware of, is
probably the fact that the theory behind this method is based on the assumption that the weights
are known exactly. Thisis amost never the case in real applications, of course, so estimated
weights must be used instead. The effect of using estimated weightsis difficult to assess, but
experience indicates that small variations in the the weights due to estimation do not often affect a
regression analysis or its interpretation. However, when the weights are estimated from small
numbers of replicated observations, the results of an analysis can be very badly and unpredictably
affected. Thisis especialy likely to be the case when the weights for extreme values of the
predictor or explanatory variables are estimated using only afew observations. It isimportant to
remain aware of this potential problem, and to only use weighted least squares when the weights
can be estimated precisely relative to one another [Carroll and Ruppert (1988), Ryan (1997)].

Weighted |east squares regression, like the other least squares methods, is also sensitive to the
effects of outliers. If potential outliers are not investigated and dealt with appropriately, they will
likely have a negative impact on the parameter estimation and other aspects of aweighted least
squares analysis. If aweighted least squares regression actually increases the influence of an
outlier, the results of the analysis may be far inferior to an unweighted least squares analysis.

Further information on the weighted least squares fitting criterion can be found in Section 4.3.
Discussion of methods for weight estimation can be found in Section 4.5.
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4. Process Modeling
4.1. Introduction to Process Modeling
4.1.4. What are some of the different statistical methods for model building?

4.1.4.4.LOESS (aka LOWESS)

Useful When LOESS is one of many "modern" modeling methods that build on

f (f. 3’) "classical" methods, such as linear and nonlinear least squares
- regression. Modern regression methods are designed to address
Unknown & situations in which the classical procedures do not perform well or

Complicated cannot be effectively applied without undue labor. LOESS combines
much of the simplicity of linear least squares regression with the
flexibility of nonlinear regression. It does this by fitting smple models
to localized subsets of the data to build up a function that describes the
deterministic part of the variation in the data, point by point. In fact,
one of the chief attractions of this method is that the data analyst is not
required to specify a global function of any form to fit amodel to the
data, only to fit segments of the data.

The trade-off for these featuresis increased computation. Because it is
so computationally intensive, LOESS would have been practically
impossible to use in the era when |east squares regression was being
developed. Most other modern methods for process modeling are

similar to LOESS in this respect. These methods have been
consciously designed to use our current computational ability to the
fullest possible advantage to achieve goals not easily achieved by
traditional approaches.
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4.1.4.4, LOESS (aka LOWESS)

Definition of a
LOESS Moddl

Localized
Subsets of
Data

LOESS, originally proposed by Cleveland (1979) and further
developed by Cleveland and Devlin (1988), specifically denotes a

method that is (somewhat) more descriptively known as locally
weighted polynomial regression. At each point in the data set a
low-degree polynomial isfit to a subset of the data, with explanatory
variable values near the point whose response is being estimated. The
polynomial isfit using weighted least squares, giving more weight to
points near the point whose response is being estimated and less
weight to points further away. The value of the regression function for
the point is then obtained by evaluating the local polynomial using the
explanatory variable values for that data point. The LOESSHit is
compl ete after regression function values have been computed for
each of the n data points. Many of the details of this method, such as
the degree of the polynomial model and the weights, are flexible. The
range of choices for each part of the method and typical defaults are
briefly discussed next.

The subsets of data used for each weighted least squaresfit in LOESS
are determined by a nearest neighbors algorithm. A user-specified
input to the procedure called the "bandwidth" or "smoothing
parameter” determines how much of the datais used to fit each local
polynomial. The smoothing parameter, g, is anumber between
(d+1)/n and 1, with d denoting the degree of the local polynomial. The
value of qisthe proportion of data used in each fit. The subset of data
used in each weighted least squares fit is comprised of the nq
(rounded to the next largest integer) points whose explanatory
variables values are closest to the point at which the response is being
estimated.

q is called the smoothing parameter because it controls the flexibility
of the LOESS regression function. Large values of g produce the
smoothest functions that wiggle the least in response to fluctuationsin
the data. The smaller qis, the closer the regression function will
conform to the data. Using too small a value of the smoothing
parameter is not desirable, however, since the regression function will
eventually start to capture the random error in the data. Useful values
of the smoothing parameter typically liein the range 0.25 to 0.5 for
most L OESS applications.

http://www.itl.nist.gov/div898/handbook/pmd/sectionl/pmd144.htm (2 of 5) [11/14/2003 5:50:18 PM]



4.1.4.4, LOESS (aka LOWESS)

Degree of
Local
Polynomials

Weight
Function

Examples

The local polynomialsfit to each subset of the data are almost always
of first or second degree; that is, either locally linear (in the straight
line sense) or locally quadratic. Using a zero degree polynomial turns
L OESS into a weighted moving average. Such asimple local model
might work well for some situations, but may not always approximate
the underlying function well enough. Higher-degree polynomials
would work in theory, but yield models that are not really in the spirit
of LOESS. LOESS is based on the ideas that any function can be well
approximated in a small neighborhood by a low-order polynomial and
that simple models can be fit to data easily. High-degree polynomials
would tend to overfit the datain each subset and are numerically
unstable, making accurate computations difficult.

As mentioned above, the weight function gives the most weight to the
data points nearest the point of estimation and the least weight to the
data points that are furthest away. The use of the weightsis based on
the ideathat points near each other in the explanatory variable space
are more likely to be related to each other in a simple way than points
that are further apart. Following thislogic, points that are likely to
follow the local model best influence the local model parameter
estimates the most. Points that are less likely to actually conform to
the local model have less influence on the local model parameter
estimates.

The traditional weight function used for LOESS is the tri-cube weight
function,

A=z for |z =1
w(z) = { 0 for |z > 1

However, any other weight function that satisfies the properties listed
in Cleveland (1979) could also be used. The weight for a specific
point in any localized subset of datais obtained by evaluating the
weight function at the distance between that point and the point of
estimation, after scaling the distance so that the maximum absolute
distance over all of the pointsin the subset of datais exactly one.

A simple computational exampleis given here to further illustrate
exactly how LOESS works. A more readlistic example, showing a
LOESS model used for thermocouple calibration, can be found in
Section 4.1.3.2
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Advantages of
LOESS

Disadvantages
of LOESS

As discussed above, the biggest advantage L OESS has over many
other methods is the fact that it does not require the specification of a
function to fit amodel to all of the datain the sample. Instead the
analyst only has to provide a smoothing parameter value and the
degree of the local polynomial. In addition, LOESS isvery flexible,
making it ideal for modeling complex processes for which no
theoretical models exist. These two advantages, combined with the
simplicity of the method, make L OESS one of the most attractive of
the modern regression methods for applications that fit the genera
framework of least squares regression but which have a complex
deterministic structure.

Although it isless obvious than for some of the other methods related
to linear least squares regression, LOESS also accrues most of the
benefits typically shared by those procedures. The most important of
those is the theory for computing uncertainties for prediction and
calibration. Many other tests and procedures used for validation of
least squares models can also be extended to L OESS models.

Although LOESS does share many of the best features of other least
squares methods, efficient use of datais one advantage that LOESS
doesn't share. LOESS requiresfairly large, densely sampled data sets
in order to produce good models. Thisis not really surprising,
however, since LOESS needs good empirical information on the local
structure of the processin order perform the local fitting. In fact, given
the results it provides, LOESS could arguably be more efficient
overall than other methods like nonlinear least squares. It may simply
frontload the costs of an experiment in data collection but then reduce
analysis costs.

Another disadvantage of LOESS is the fact that it does not produce a
regression function that is easily represented by a mathematical
formula. This can make it difficult to transfer the results of an analysis
to other people. In order to transfer the regression function to another
person, they would need the data set and software for LOESS
calculations. In nonlinear regression, on the other hand, it isonly
necessary to write down afunctional form in order to provide
estimates of the unknown parameters and the estimated uncertainty.
Depending on the application, this could be either amajor or a minor
drawback to using LOESS.
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Finally, as discussed above, LOESS is a computational intensive
method. Thisis not usually a problem in our current computing
environment, however, unless the data sets being used are very large.
LOESS is also prone to the effects of outliersin the data set, like other
least squares methods. There is an iterative, robust version of LOESS
[Cleveland (1979)] that can be used to reduce LOESS sensitivity to

outliers, but extreme outliers can still overcome even the robust
method.
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4. Process Modeling

4.2.Underlying Assumptions for Process
Modeling

Implicit
Assumptions
Underlie
Most
Actions

Checking
Assumptions
Provides
Feedback on
Actions

Overview of
Section 4.2

Most, if not all, thoughtful actions that people take are based on ideas,

or assumptions, about how those actions will affect the goals they want
to achieve. The actual assumptions used to decide on a particular course
of action are rarely laid out explicitly, however. Instead, they are only
implied by the nature of the action itself. Implicit assumptions are
inherent to process modeling actions, just as they are to most other types
of action. It isimportant to understand what the implicit assumptions are
for any process modeling method because the validity of these
assumptions affect whether or not the goals of the analysis will be met.

If the implicit assumptions that underlie a particular action are not true,
then that action is not likely to meet expectations either. Sometimesit is
abundantly clear when a goal has been met, but unfortunately that is not
always the case. In particular, it is usually not possible to obtain
immediate feedback on the attainment of goals in most process
modeling applications. The goals of process modeling, sucha as
answering a scientific or engineering question, depend on the
correctness of a process model, which can often only be directly and
absolutely determined over time. In lieu of immediate, direct feedback,
however, indirect information on the effectiveness of a process
modeling analysis can be obtained by checking the validity of the
underlying assumptions. Confirming that the underlying assumptions
are valid helps ensure that the methods of analysis were appropriate and
that the results will be consistent with the goals.

This section discusses the specific underlying assumptions associated
with most model -fitting methods. In discussing the underlying
assumptions, some background is also provided on the consequences of
stopping the modeling process short of completion and leaving the
results of an analysis at odds with the underlying assumptions. Specific
data analysis methods that can be used to check whether or not the
assumptions hold in a particular case are discussed in Section 4.4.4.
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4.2. Underlying Assumptions for Process Modeling

Contents of 1. What are the typical underlying assumptions in process
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The process is a statistical process.

The means of the random errors are zero.

The random errors have a constant standard deviation.

The random errors follow anormal distribution.

The data are randomly sampled from the process.

The explanatory variables are observed without error.
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4.2.1. What are the typical underlying assumptions in process modeling?
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This section lists the typical assumptions underlying most process
modeling methods. On each of the following pages, one of the six
major assumptions is described individually; the reasons for it's
importance are also briefly discussed; and any methods that are not
subject to that particular assumption are noted. As discussed on the
previous page, these are implicit assumptions based on properties
inherent to the process modeling methods themselves. Successful use
of these methods in any particular application hinges on the validity of
the underlying assumptions, whether their existence is acknowledged
or not. Section 4.4.4 discusses methods for checking the validity of

these assumptions.

The process is a statistical process.

The means of the random errors are zero.

The random errors have a constant standard deviation.

The random errors follow anormal distribution.

The data are randomly sampled from the process.
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The explanatory variables are observed without error.
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4.2.1.1. The process is a statistical process.
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4. Process Modeling
4.2. Underlying Assumptions for Process Modeling
4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.1.The process is a statistical process.

"Satistical" The most basic assumption inherent to all statistical methods for
Implies process modeling is that the process to be described is actually a
Random statistical process. This assumption seems so obviousthat it is
Variation sometimes overlooked by analysts immersed in the details of a

process or in arush to uncover information of interest from an
exciting new data set. However, in order to successfully model a
process using statistical methods, it must include random variation.
Random variation is what makes the process statistical rather than
purely deterministic.

Role of The overall goal of all statistical procedures, including those designed
Random for process modeling, isto enable valid conclusions to be drawn from
Variation noisy data. As aresult, statistical procedures are designed to compare

apparent effects found in a data set to the noise in the data in order to
determine whether the effects are more likely to be caused by a
repeatable underlying phenomenon of some sort or by fluctuationsin
the data that happened by chance. Thus the random variation in the
process serves as a baseline for drawing conclusions about the nature
of the deterministic part of the process. If there were no random noise
In the process, then conclusions based on statistical methods would no
longer make sense or be appropriate.
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4.2.1.1. The process is a statistical process.
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NIST
SEMATECH

Fortunately this assumption is valid for most physical processes.
There will be random error in the measurements almost any time
things need to be measured. In fact, there are often other sources of
random error, over and above measurement error, in complex, real-life
processes. However, examples of non-statistical processes include

1. physical processesin which the random error is negligible
compared to the systematic errors,

2. processes based on deterministic computer simulations,
3. processes based on theoretical calculations.

If models of these types of processes are needed, use of mathematical
rather than statistical process modeling tools would be more

appropriate.

One sure indicator that a process is statistical isif repeated
observations of the process response under a particular fixed condition
yields different results. The converse, repeated observations of the
process response always yielding the same value, isnot asure
indication of a non-statistical process, however. For example, in some
types of computations in which complex numerical methods are used
to approximate the solutions of theoretical equations, the results of a
computation might deviate from the true solution in an essentially
random way because of the interactions of round-off errors, multiple
levels of approximation, stopping rules, and other sources of error.
Even so, the result of the computation might be the same each time it
Is repeated because all of theinitial conditions of the calculation are
reset to the same values each time the calculation is made. As aresult,
scientific or engineering knowledge of the process must also always
be used to determine whether or not a given processis statistical.
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4.2.1.2. The means of the random errors are zero.
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4. Process Modeling

4.2. Underlying Assumptions for Process Modeling

4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.2.The means of the random errors are

Parameter
Estimation
Requires
Known
Relationship
Between
Data and
Regression
Function

Validity of
Assumption
Improved by
Experimental
Design

Z€ero.

To be able to estimate the unknown parameters in the regression
function, it is necessary to know how the data at each point in the
explanatory variable space relate to the corresponding value of the
regression function. For example, if the measurement system used to
observe the values of the response variable drifts over time, then the
deterministic variation in the data would be the sum of the drift
function and the true regression function. As aresult, either the data
would need to be adjusted prior to fitting the model or the fitted model
would need to be adjusted after the fact to obtain the regression
function. In either case, information about the form of the drift function
would be needed. Since it would be difficult to generalize an activity
like drift correction to a generic process, and since it would also be
unnecessary for many processes, most process modeling methods rely
on having data in which the observed responses are directly equal, on
average, to the regression function values. Another way of expressing
thisideaisto say the mean of the random errors at each combination of
explanatory variable valuesis zero.

The validity of this assumption is determined by both the nature of the
process and, to some extent, by the data collection methods used. The
process may be one in which the data are easily measured and it will be
clear that the data have a direct relationship to the regression function.
When thisisthe case, use of optimal methods of data collection are not
critical to the success of the modeling effort. Of course, it israrely
known that thiswill be the case for sure, so it isusually worth the effort
to collect the data in the best way possible.
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4.2.1.2. The means of the random errors are zero.
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Other processes may be less easily dealt with, being subject to
measurement drift or other systematic errors. For these processes it
may be possible to eliminate or at least reduce the effects of the
systematic errors by using good experimental design techniques, such
as randomization of the measurement order. Randomization can
effectively convert systematic measurement errors into additional
random process error. While adding to the random error of the process
Isundesirable, thiswill provide the best possible information from the
data about the regression function, which is the current goal.

In the most difficult processes even good experimental design may not
be able to salvage a set of data that includes a high level of systematic
error. In these situations the best that can be hoped for is recognition of
the fact that the true regression function has not been identified by the
analysis. Then effort can be put into finding a better way to solve the
problem by correcting for the systematic error using additional
information, redesigning the measurement system to eliminate the
systematic errors, or reformulating the problem to obtain the needed
information another way.

Another more subtle violation of this assumption occurs when the
explanatory variables are observed with random error. Although it
intuitively seems like random errorsin the explanatory variables should
cancel out on average, just as random errors in the observation of the
response variable do, that is unfortunately not the case. The direct
linkage between the unknown parameters and the explanatory variables
in the functional part of the model makes this situation much more
complicated than it is for the random errorsin the response variable .
More information on why this occurs can be found in Section 4.2.1.6.
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4.2.1.3. The random errors have a constant standard deviation.
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4. Process Modeling

4.2. Underlying Assumptions for Process Modeling

4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.3.The random errors have a constant

standard deviation.

All Data Due to the presence of random variation, it can be difficult to determine
Treated whether or not all of the datain a data set are of equal quality. Asa
Equally by result, most process modeling procedurestreat all of the data equally
Most when using it to estimate the unknown parameters in the model. Most
Process methods also use a single estimate of the amount of random variability
Modeling in the data for computing prediction and calibration uncertainties.
Methods Treating al of the datain the same way also yields simpler,
easier-to-use models. Not surprisingly, however, the decision to treat the
data like this can have a negative effect on the quality of the resulting
model too, if it turns out the data are not all of equal quality.
Data Of course data quality can't be measured point-by-point sinceit is clear
Quality from direct observation of the data that the amount of error in each point
Measured by  varies. Instead, points that have the same underlying average squared
Sandard error, or variance, are considered to be of equal quality. Even though
Deviation the specific process response values observed at points that meet this

criterion will have different errors, the data collected at such points will
be of equal quality over repeated data collections. Since the standard
deviation of the data at each set of explanatory variable valuesis simply
the square root of its variance, the standard deviation of the data for
each different combination of explanatory variables can also be used to
measure data quality. The standard deviation is preferred, in fact,
because it has the advantage of being measured in the same units as the
response variable, making it easier to relate to this statistic.
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4.2.1.3. The random errors have a constant standard deviation.
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The assumption that the random errors have constant standard deviation
isnot implicit to weighted least squares regression. Instead, it is
assumed that the weights provided in the analysis correctly indicate the
differing levels of variability present in the response variables. The
weights are then used to adjust the amount of influence each data point
has on the estimates of the model parameters to an appropriate level.
They are also used to adjust prediction and calibration uncertainties to
the correct levels for different regions of the data set.

Even though it uses weighted least squares to estimate the model
parameters, LOESS still relies on the assumption of a constant standard
deviation. The weights used in LOESS actually reflect the relative level
of similarity between mean response values at neighboring pointsin the
explanatory variable space rather than the level of response precision at
each set of explanatory variable values. Actually, because LOESS uses
separate parameter estimates in each localized subset of data, it does not
require the assumption of a constant standard deviation of the data for
parameter estimation. The subsets of data used in LOESS are usually
small enough that the precision of the datais roughly constant within
each subset. L OESS normally makes no provisions for adjusting
uncertainty computations for differing levels of precision across a data
set, however.
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4.2.1.4. The random errors follow a normal distribution.
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4.2. Underlying Assumptions for Process Modeling

4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.4.The random errors follow a normal

Primary Need
for
Distribution
Information is
Inference

distribution.

After fitting a model to the data and validating it, scientific or
engineering gquestions about the process are usually answered by
computing statistical intervals for relevant process quantities using the
model. These intervals give the range of plausible valuesfor the
process parameters based on the data and the underlying assumptions
about the process. Because of the statistical nature of the process,

however, the intervals cannot always be guaranteed to include the true
process parameters and still be narrow enough to be useful. Instead the
intervals have a probabilistic interpretation that guarantees coverage of
the true process parameters a specified proportion of the time. In order
for these intervalsto truly have their specified probabilistic
interpretations, the form of the distribution of the random errors must
be known. Although the form of the probability distribution must be
known, the parameters of the distribution can be estimated from the
data.

Of course the random errors from different types of processes could be
described by any one of awide range of different probability
distributions in general, including the uniform, triangular, double
exponential, binomial and Poisson distributions. With most process
modeling methods, however, inferences about the process are based on
the idea that the random errors are drawn from a normal distribution.
One reason thisis done is because the normal distribution often
describes the actual distribution of the random errorsin real-world
processes reasonably well. The normal distribution is also used
because the mathematical theory behind it is well-developed and
supports a broad array of inferences on functions of the data relevant
to different types of questions about the process.
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4.2.1.4. The random errors follow a normal distribution.

Of coursg, if it turns out that the random errors in the process are not
normally distributed, then any inferences made about the process may
be incorrect. If the true distribution of the random errors is such that
the scatter in the datais less than it would be under a normal
distribution, it is possible that the intervals used to capture the values
of the process parameters will simply be alittle longer than necessary.
Theintervals will then contain the true process parameters more often
than expected. It ismore likely, however, that the intervals will be too
short or will be shifted away from the true mean value of the process
parameter being estimated. Thiswill result in intervals that contain the
true process parameters less often than expected. When thisis the case,
the intervals produced under the normal distribution assumption will
likely lead to incorrect conclusions being drawn about the process.

The methods used for parameter estimation can also imply the
assumption of normally distributed random errors. Some methods, like
maximum likelihood, use the distribution of the random errors directly
to obtain parameter estimates. Even methods that do not use
distributional methods for parameter estimation directly, like least
squares, often work best for data that are free from extreme random
fluctuations. The normal distribution is one of the probability
distributions in which extreme random errors are rare. If some other
distribution actually describes the random errors better than the normal
distribution does, then different parameter estimation methods might
need to be used in order to obtain good estimates of the values of the
unknown parameters in the model.
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4.2.1.5. The data are randomly sampled from the process.
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4. Process Modeling

4.2. Underlying Assumptions for Process Modeling

4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.5.The data are randomly sampled

Data Must
Reflect the
Process

Data Best
Reflects the
Process Via
Unbiased
Sampling

from the process.

Since the random variation inherent in the processis critical to
obtaining satisfactory results from most modeling methods, it is
important that the data reflect that random variation in arepresentative
way. Because of the nearly infinite number of ways non-representative
sampling might be done, however, few, if any, statistical methods
would ever be able to correct for the effects that would have on the data.
Instead, these methods rely on the assumption that the data will be
representative of the process. This meansthat if the variation in the data
IS not representative of the process, the nature of the deterministic part

of the model, described by the function, J (% 3) will beincorrect.
This, in turn, islikely to lead to incorrect conclusions being drawn
when the model is used to answer scientific or engineering questions
about the process.

Given that we can never determine what the actual random errorsin a
particular data set are, representative samples of data are best obtained
by randomly sampling data from the process. In a simple random
sample, every response from the population(s) being sampled has an
egual chance of being observed. As aresult, while it cannot guarantee
that each sample will be representative of the process, random sampling
does ensure that the act of data collection does not |eave behind any
biases in the data, on average. This means that most of the time, over
repeated samples, the datawill be representative of the process. In
addition, under random sampling, probability theory can be used to
guantify how often particular modeling procedures will be affected by
relatively extreme variationsin the data, allowing usto control the error
rates experienced when answering questions about the process.
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4.2.1.5. The data are randomly sampled from the process.

This Obtaining datais of course something that is actually done by the
Assumption analyst rather than being a feature of the processitself. This givesthe
Relatively analyst some ability to ensure that this assumption will be valid. Paying

Controllable  careful attention to data collection procedures and employing
experimental design principles like randomization of the run order will
yield a sample of datathat is as close as possible to being perfectly
randomly sampled from the process. Section 4.3.3 has additional

discussion of some of the principles of good experimental design.
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4.2.1.6. The explanatory variables are observed without error.
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4.2. Underlying Assumptions for Process Modeling

4.2.1. What are the typical underlying assumptions in process modeling?

4.2.1.6.The explanatory variables are

Assumption
Needed for
Parameter
Estimation

Explanatory
Variables
Observed
with Random
Error Add
Termsto £

observed without error.

Asdiscussed earlier in this section, the random errors (the £'s) in the
basic model,

v=f(5:8)+e

must have a mean of zero at each combination of explanatory variable
values to obtain valid estimates of the parameters in the functional part
of the process model (the [3's). Some of the more obvious sources of
random errors with non-zero means include

1. drift in the process,

2. drift in the measurement system used to obtain the process data,
and

3. use of amiscalibrated measurement system.

However, the presence of random errors in the measured values of the
explanatory variables is another, more subtle, source of £'swith
non-zero means.

The values of explanatory variables observed with independent,

normally distributed random errors, & , can be differentiated from their
true values using the definition

— — -
Lohs — Lhue —I_ E

Then applying the mean value theorem from multivariable calculus
shows that the random errorsin amodel based on -z s,

v=f(Fa:8) +e
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4.2.1.6. The explanatory variables are observed without error.

are [ Seber (1989)]

- ¥— fl[fi:rue —I_ gt Ef)

= Y- f{ftrue;.g) + S'f"'{f*‘j)

—

= Ey-l—é_"-f”l[f*:_ﬁ]

with Ey denoting the random error associated with the basic form of
the model,

U= f{fi?ue;.&':] + Ey’

under all of the usual assumptions (denoted here more carefully than is
usually necessary), and T * is avalue between Ttrue and T cbs. This
extra term in the expression of the random error, §.f /{ £*: 3),

complicates matters because £ /{ 7*: 3} istypically not a constant.
For most functions, f/{ 7*: ) will depend on the explanatory
variable values and, more importantly, on d . Thisisthe source of the

problem with observing the explanatory variable values with random
error.

5 Corrdlated  Because each of the components of T *, denoted by T ; , are functions

W'Eh . of the components of & , similarly denoted by 23, whenever any of the

T g components of +_' e __a"] simplify to expressions that are not
constant, the random variables & ;and _,+'T-’ (" __ﬂ"] will be correlated.
This correlation will then usually induce a non-zero mean in the
product §-f /(F*: 3)
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4.2.1.6. The explanatory variables are observed without error.

Biases Can
Affect
Parameter
Estimates
When Means
of £'sare0

For example, a positive correlation between §; and f./{ 7*: 3) means
that whend ; islarge, f./( 7*; 3)will also tend to be large. Similarly,
whendissmall, f./{7*: 3 will also tend to be small. This could

caused; and f./(F*: 3) to always have the same sign, which would
preclude their product having a mean of zero since all of the values of
S.FAF" 3 would be greater than or equal to zero. A negative

correlation, on the other hand, could mean that these two random
variables would always have opposite signs, resulting in a negative

mean for § . f Hr j‘}. These examples are extreme, but illustrate

how correlation can cause trouble even if both & and f /(" 2) have
zero means individually. What will happen in any particular modeling

situation will depend on the variability of thed 's, the form of the
function, the true values of the (3's, and the values of the explanatory
variables.

Even if the £'s have zero means, observation of the explanatory
variables with random error can still bias the parameter estimates.
Depending on the method used to estimate the parameters, the
explanatory variables can be used in the computation of the parameter

estimates in ways that keep thed 's from canceling out. One
unfortunate example of this phenomenon is the use of least squares to
estimate the parameters of astraight line. In this case, because of the
simplicity of the model,

V=050 + B1ras +£

the term 5'1*_' A __ﬂ"] simplifiesto &3, Because this term does not

involve T *, it does not induce non-zero meansin the £'s. With the way
the explanatory variables enter into the formulas for the estimates of
the [3's, the random errors in the explanatory variables do not cancel
out on average. This results in parameter estimators that are biased and
will not approach the true parameter values no matter how much data
are collected.
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4.2.1.6. The explanatory variables are observed without error.

Berkson
Model Does
Not Depend
on this
Assumption

Thereis one type of model in which errorsin the measurement of the
explanatory variables do not bias the parameter estimates. The Berkson
model [Berkson (1950)] isamodel in which the observed values of the
explanatory variables are directly controlled by the experimenter while
their true values vary for each observation. The differences between
the observed and true values for each explanatory variable are assumed
to be independent random variables from a normal distribution with a
mean of zero. In addition, the errors associated with each explanatory
variable must be independent of the errors associated with all of the
other explanatory variables, and also independent of the observed
values of each explanatory variable. Finally, the Berkson model
requires the functional part of the model to be astraight line, a plane,
or a higher-dimension first-order model in the explanatory variables.
When these conditions are al met, the errors in the explanatory
variables can be ignored.

Applications for which the Berkson model correctly describes the data
are most often situations in which the experimenter can adjust
equipment settings so that the observed values of the explanatory
variables will be known ahead of time. For example, in a study of the
relationship between the temperature used to dry a sample for chemical
analysis and the resulting concentration of avolatile consituent, an
oven might be used to prepare samples at temperatures of 300 to 500
degreesin 50 degree increments. In reality, however, the true
temperature inside the oven will probably not exactly equal 450
degrees each time that setting is used (or 300 when that setting is used,
etc). The Berkson model would apply, though, as long as the errorsin
measuring the temperature randomly differed from one another each
time an observed value of 450 degrees was used and the mean of the
true temperatures over many repeated runs at an oven setting of 450
degrees really was 450 degrees. Then, aslong as the model was also a
straight line relating the concentration to the observed values of
temperature, the errors in the measurement of temperature would not
bias the estimates of the parameters.
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Assumption
Validity
Requires
Careful
Consideration
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The validity of this assumption requires careful consideration in
scientific and engineering applications. In these types of applications it
Is most often the case that the response variable and the explanatory
variables will all be measured with some random error. Fortunately,
however, there is also usually some knowledge of the relative amount
of information in the observed values of each variable. Thisallows a
rough assessment of how much bias there will be in the estimated
values of the parameters. Aslong as the biases in the parameter
estimators have a negligible effect on the intended use of the model,
then this assumption can be considered valid from a practical
viewpoint. Section 4.4.4, which covers model validation, pointsto a
discussion of a practical method for checking the validity of this
assumption.
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This section lays out some general principles for collecting data for
construction of process models. Using well-planned data collection
procedures is often the difference between successful and unsuccessful
experiments. In addition, well-designed experiments are often less
expensive than those that are less well thought-out, regardless of overall
success or failure.

Specifically, this section will answer the question:

What can the analyst do even prior to collecting the data (that is,
at the experimental design stage) that would allow the analyst to
do an optimal job of modeling the process?

This section deals with the following five questions:
1. What is design of experiments (aka DEX or DOE)?

. Why is experimental design important for process modeling?

2
3. What are some genera design principles for process modeling?
4. |'ve heard some people refer to "optimal" designs, shouldn't | use

those?
5. How can | tell if aparticular experimental design is good for my
application?
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4.3.1.What is design of experiments (aka
DEX or DOE)?

Systematic
Approach to
Data Collection

DEX Problem
Areas

Comparative

Screening
Characterization

Modeling

Design of experiments (DEX or DOE) is a systematic, rigorous
approach to engineering problem-solving that applies principles and
techniques at the data collection stage so as to ensure the generation
of valid, defensible, and supportable engineering conclusions. In
addition, all of thisis carried out under the constraint of a minimal
expenditure of engineering runs, time, and money.

There are 4 genera engineering problem areas in which DEX may
be applied:

1. Comparative

2. Screening/Characterizing
3. Modeling

4. Optimizing

In the first case, the engineer is interested in assessing whether a
change in asingle factor hasin fact resulted in a
change/improvement to the process as a whole.

In the second case, the engineer isinterested in "understanding” the
process as awhole in the sense that he/she wishes (after design and
analysis) to have in hand a ranked list of important through
unimportant factors (most important to least important) that affect
the process.

In the third case, the engineer isinterested in functionally modeling
the process with the output being a good-fitting (= high predictive
power) mathematical function, and to have good (= maximal
accuracy) estimates of the coefficients in that function.
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In the fourth case, the engineer isinterested in determining optimal

Optimizing
settings of the process factors; that is, to determine for each factor
the level of the factor that optimizes the process response.
In this section, we focus on case 3: modeling.
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4.3. Data Collection for Process Modeling

4.3.2.Why is experimental design
Important for process modeling?

Output from
Process
Modd is
Fitted
Mathematical
Function

What are
Good
Coefficient
Values?

The output from process modeling is afitted mathematical function
with estimated coefficients. For example, in modeling resistivity, 4y, as

afunction of dopant density, r, an analyst may suggest the function

v=05+ Bir+ 8z’
in which the coefficients to be estimated are 3., 3, ad ;3 . Evenfor

agiven functional form, there is an infinite number of potentia
coefficient values that potentially may be used. Each of these
coefficient values will in turn yield predicted values.

Poor values of the coefficients are those for which the resulting
predicted values are considerably different from the observed raw data
7y. Good values of the coefficients are those for which the resulting

bredi cted values are close to the observed raw data 1. The best values

of the coefficients are those for which the resulting predicted values are
close to the observed raw data 1y, and the statistical uncertainty

connected with each coefficient is small.

There are two considerations that are useful for the generation of "best"
coefficients:

1. Least squares criterion
2. Design of experiment principles
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Least
Squares
Criterion

Design of
Experiment
Principles

Principle 1:

Minimize
Coefficient
Estimation
Variation

For agiven data set (e.g., 10 (T,y) pairs), the most common procedure
for obtaining the coefficientsfor 3y = f ( I ,_-_';'j Isthe least squares
estimation criterion. This criterion yields coefficients with predicted

valuesthat are closest to the raw datay in the sense that the sum of the

squared differences between the raw data and the predicted valuesis as
small as possible.

The overwhelming majority of regression programs today use the least
squares criterion for estimating the model coefficients. Least squares
estimates are popular because

1. the estimators are statistically optimal (BLUES: Best Linear
Unbiased Estimators);

2. the estimation algorithm is mathematically tractable, in closed
form, and therefore easily programmable.

How then can this be improved? For agiven set of  values it cannot
be; but frequently the choice of the r values is under our control. If we
can select the T values, the coefficients will have less variability than if
the T are not controlled.

Asto what values should be used for the x's, we look to established
experimental design principles for guidance.

Thefirst principle of experimental design isto control the values
within the I vector such that after the 1 data are collected, the

subsequent model coefficients are as good, in the sense of having the
smallest variation, as possible.

The key underlying point with respect to design of experiments and
process modeling is that even though (for simple () fitting, for
example) the least squares criterion may yield optimal (minimal
variation) estimators for a given distribution of T values, some
distributions of datain the T vector may yield better (smaller variation)
coefficient estimates than other r vectors. If the analyst can specify the
valuesin the I vector, then he or she may be able to drastically change
and reduce the noisiness of the subsequent least squares coefficient
estimates.
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Five Designs

Arethe Fitted
Lines Better
for Some
Designs?

To see the effect of experimental design on process modeling, consider
the following simplest case of fitting aline:

¥v=>5y+ thr

Suppose the analyst can afford 10 observations (that is, 10 () pairs)
for the purpose of determining optimal (that is, minimal variation)
estimators of ;3. and 3 . What 10 & val ues should be used for the
purpose of collecting the corresponding 10 ; values? Colloquialy,

where should the 10 & values be sprinkled along the horizontal axis so
as to minimize the variation of the least squares estimated coefficients
for 3, and ;3,7 Should the 10 T values be:

1. ten equi-spaced values across the range of interest?
2. fivereplicated equi-spaced values across the range of interest?

3. fivevalues at the minimum of the I range and five values at the
maximum of the T range?

4. one value at the minimum, eight values at the mid-range, and
one value at the maximum?

5. four values at the minimum, two values at mid-range, and four
values at the maximum?

or (interms of "quality” of the resulting estimates for 3 and 3 1)
perhaps it doesn't make any difference? '

For each of the above five experimental designs, there will of course be
1y data collected, followed by the generation of least squares estimates

for ;3. and ;3,, and so each design will in turn yield afitted line.

But are the fitted lines, i.e., the fitted process models, better for some
designs than for others? Are the coefficient estimator variances smaller
for some designs than for others? For given estimates, are the resulting
predicted values better (that is, closer to the observed 44 values) than for
other designs? The answer to all of the aboveis YES. It DOES make a
difference.

The most popular answer to the above question about which design to

use for linear modeling is design #1 with ten equi-spaced points. It can
be shown, however, that the variance of the estimated slope parameter
depends on the design according to the relationship

o |
e > 3]
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What isthe
Wor st
Design?

Designs 1, 2,
and 5
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Therefore to obtain minimum variance estimators, one maximizes the
denominator on the right. To maximize the denominator, it is (for an
arbitrarily fixed I), best to position the I's as far away from I as
possible. Thisis done by positioning half of the ='s at the lower
extreme and the other half at the upper extreme. Thisis design #3
above, and this "dumbbell" design (half low and half high) isin fact the
best possible design for fitting aline. Upon reflection, thisis intuitively
arrived at by the adage that "2 points define aline”, and so it makes the
most sense to determine those 2 points as far apart as possible (at the
extremes) and as well as possible (having half the data at each
extreme). Hence the design of experiment solution to model processing
when the model isalineisthe "dumbbell" design--half the X's at each
extreme.

What is the worst design in the above case? Of the five designs, the
worst design is the one that has maximum variation. In the
mathematical expression above, it isthe one that minimizes the
denominator, and so thisis design #4 above, for which amost al of the
data are located at the mid-range. Clearly the estimated line in this case
IS going to chase the solitary point at each end and so the resulting
linear fit isintuitively inferior.

What about the other 3 designs? Designs 1, 2, and 5 are useful only for
the case when we think the model may be linear, but we are not sure,
and so we allow additional points that permit fitting alineif
appropriate, but build into the design the "capacity" to fit beyond aline
(e.g., quadratic, cubic, etc.) if necessary. In this regard, the ordering of
the designs would be

o design 5 (if our worst-case model is quadratic),
« design 2 (if our worst-case model is quartic)
o design 1 (if our worst-case model is quintic and beyond)
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4.3.3.What are some general design
principles for process modeling?

Experimental There are six principles of experimental design as applied to process
Design modeling:
Principles 1. Capacity for Primary Model
Applied to 2. Capacity for Alternative Model
Process A . . :
Modeling 3. Minimum Variance of Coefficient Estimators
4. Sample wherethe Variation Is
5. Replication
6. Randomization

We discuss each in detail below.

Capacity for For your best-guess model, make sure that the design has the capacity

Primary for estimating the coefficients of that model. For a simple example of

Model this, if you are fitting a quadratic model, then make sure you have at
least three distinct horixontal axis points.

Capacity for If your best-guess model happens to be inadequate, make sure that the

Alternative design has the capacity to estimate the coefficients of your best-guess

Model back-up alternative model (which meansimplicitly that you should

have already identified such amodel). For a simple example, if you
suspect (but are not positive) that alinear model is appropriate, then it
is best to employ a globally robust design (say, four points at each
extreme and three points in the middle, for aten-point design) as
opposed to the locally optimal design (such asfive points at each
extreme). The locally optimal design will provide abest fit to the line,
but have no capacity to fit a quadratic. The globally robust design will
provide a good (though not optimal) fit to the line and additionally
provide a good (though not optimal) fit to the quadratic.
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Minimum
Variance of
Coefficient
Estimators

Sample Where
the Variation
Is (Non
Constant
Variance
Case)

Sample Where
the Variation

Is (Steep
Curve Case)

4.3.3. What are some general design principles for process modeling?

For a given model, make sure the design has the property of
minimizing the variation of the least squares estimated coefficients.
Thisisagenera principle that is alwaysin effect but which in
practice is hard to implement for many models beyond the simpler

1-factor yy = f |[ I, ,_7';'} models. For more complicated 1-factor

models, and for most multi-factor 3y = f (f; j} models, the

expressions for the variance of the least squares estimators, although
available, are complicated and assume more than the analyst typically
knows. The net result is that this principle, though important, is harder
to apply beyond the simple cases.

Regardless of the ssimplicity or complexity of the model, there are
situations in which certain regions of the curve are noisier than others.
A simple case is when there is alinear relationship between T and
but the recording device is proportional rather than absolute and so
larger values of y; areintrinsically noisier than smaller values of 4. In
such cases, sampling where the variation is means to have more
replicated points in those regions that are noisier. The practical
answer to how many such replicated points there should beis

n; =

|

with o, denoting the theoretical standard deviation for that given
region of the curve. Usually o is estimated by a-priori guesses for
what the local standard deviations are.

A common occurence for non-linear modelsis for some regions of the
curve to be stegper than others. For example, in fitting an exponential
model (small  corresponding to large 1y, and large 44 corresponding
to small 1) it is often the case that the ; data in the steep region are
intrinsically noisier than the 1y data in the relatively flat regions. The
reason for thisisthat commonly the I values themselves have a bit of
noise and this T-noise gets translated into larger 4j-noise in the steep
sections than in the shallow sections. In such cases, when we know
the shape of the response curve well enough to identify
steep-versus-shallow regions, it is often a good idea to sample more
heavily in the steep regions than in the shallow regions. A practical
rule-of-thumb for where to position the I values in such situationsis
to

1. sketch out your best guess for what the resulting curve will be;
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2. partition the vertical (that isthe y;) axisinto 72 equi-spaced

points (with 7z denoting the total number of data points that you
can afford);

3. draw horizontal lines from each vertical axis point to where it
hits the sketched-in curve.

4. drop avertical projection line from the curve intersection point
to the horizontal axis.

These will be the recommended  values to use in the design.

The above rough procedure for an exponentially decreasing curve
would thus yield alogarithmic preponderance of pointsin the steep
region of the curve and relatively few pointsin the flatter part of the
curve.

If affordable, replication should be part of every design. Replication
allows us to compute a model -independent estimate of the process
standard deviation. Such an estimate may then be used as a criterion
in an objective lack-of-fit test to assess whether a given model is
adeguate. Such an objective lack-of-fit F-test can be employed only if
the design has built-in replication. Some replication is essential;
replication at every point isideal.

Just because the 1's have some natural ordering does not mean that
the data should be collected in the same order as the 's. Some aspect
of randomization should enter into every experiment, and experiments
for process modeling are no exception. Thusif your are sampling ten
points on a curve, the ten 4 values should not be collected by

sequentially stepping through the I values from the smallest to the
largest. If you do so, and if some extraneous drifting or wear occurs in
the machine, the operator, the environment, the measuring device,

etc., then that drift will unwittingly contaminate the 3y values and in

turn contaminate the final fit. To minimize the effect of such potential
drift, it is best to randomize (use random number tables) the sequence
of the I values. Thiswill not make the drift go away, but it will
spread the drift effect evenly over the entire curve, realistically
inflating the variation of the fitted values, and providing some
mechanism after the fact (at the residual analysis model validation
stage) for uncovering or discovering such adrift. If you do not
randomize the run sequence, you give up your ability to detect such a
drift if it occurs.
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4.3.4.1've heard some people refer to
"optimal” designs, shouldn't | use
those?

Classical
Designs Heavily
Used in Industry

Reasons
Classical
Designs May
Not Work

The most heavily used designs in industry are the "classical designs’
(full factorial designs, fractional factorial designs, Latin square
designs, Box-Behnken designs, etc.). They are so heavily used
because they are optimal in their own right and have served superbly
well in providing efficient insight into the underlying structure of
industrial processes.

Cases do arise, however, for which the tabulated classical designs do
not cover a particular practical situation. That is, user constraints
preclude the use of tabulated classical designs because such classical
designs do not accommodate user constraints. Such constraints
include:

1. Limited maximum number of runs:

User constraints in budget and time may dictate a maximum
allowable number of runsthat istoo small or too "irregular”
(e.g., "13") to be accommodated by classical designs--even
fractional factorial designs.

2. Impossible factor combinations:

The user may have some factor combinations that are
impossible to run. Such combinations may at times be
specified (to maintain balance and orthogonality) as part of a
recommeded classical design. If the user simply omitsthis
impossible run from the design, the net effect may be a
reduction in the quality and optimaltiy of the classical design.

3. Too many levels:
The number of factors and/or the number of levels of some

factors intended for use may not be included in tabulations of
classical designs.
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What to Do If
Classical
Designs Do Not
Exist?

Common
Optimality
Criteria

Need 1: a Model

4. Complicated underlying model:

The user may be assuming an underlying model that istoo
complicated (or too non-linear), so that classical designs
would be inappropriate.

If user constraints are such that classical designs do not exist to
accommodate such constraints, then what is the user to do?

The previous section's list of design criteria (capability for the
primary model, capability for the alternate model, minimum
variation of estimated coefficients, etc.) is agood passive target to
aim for in terms of desirable design properties, but provides little
help in terms of an active formal construction methodology for
generating a design.

To satisfy this need, an "optimal design" methodology has been
developed to generate a design when user constraints preclude the
use of tabulated classical designs. Optimal designs may be optimal
in many different ways, and what may be an optimal design
according to one criterion may be suboptimal for other criteria.
Competing criteriahave led to aliteral alphabet-soup collection of
optimal design methodologies. The four most popular ingredientsin
that "soup" are:

D-optimal designs. minimize the generalized variance of the
parameter estimators.

A-optimal designs. minimize the average variance of the parameter
estimators.

G-optimal designs: minimize the maximum variance of the
predicted values.

V-optimal designs: minimize the average variance of the predicted
values.

The motivation for optimal designsisthe practical constraints that
the user has. The advantage of optimal designsis that they do
provide a reasonabl e design-generating methodology when no other
mechanism exists. The disadvantage of optimal designsisthat they
require amodel from the user. The user may not have this model.

All optimal designs are model-dependent, and so the quality of the
final engineering conclusions that result from the ensuing design,
data, and analysis is dependent on the correctness of the analyst's
assumed model. For example, if the responses from a particular
process are actually being drawn from a cubic model and the analyst
assumes a linear model and uses the corresponding optimal design
to generate data and perform the data analysis, then the fina
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engineering conclusions will be flawed and invalid. Hence one price
for obtaining an in-hand generated design is the designation of a
model. All optimal designs need a model; without a model, the
optimal design-generation methodology cannot be used, and general
design principles must be reverted to.

Need 2: a The other price for using optimal design methodology isa
Candidate Set of  user-specified set of candidate points. Optimal designs will not
Points generate the best design points from some continuous region--that is

too much to ask of the mathematics. Optimal designs will generate
the best subset of 7 points from alarger superset of candidate
points. The user must specify this candidate set of points. Most
commonly, the superset of candidate pointsisthe full factorial
design over afine-enough grid of the factor space with which the
analyst is comfortable. If the grid istoo fine, and the resulting
superset overly large, then the optimal design methodology may
prove computationally challenging.

Optimal The optimal design-generation methodology is computationally
Designsare intensive. Some of the designs (e.g., D-optimal) are better than other
Computationally  designs (such as A-optimal and G-optimal) in regard to efficiency of
Intensive the underlying search algorithm. Like most mathematical

optimization techniques, there is no iron-clad guarantee that the
result from the optimal design methodology isin fact the true
optimum. However, the results are usually satisfactory from a
practical point of view, and are far superior than any ad hoc designs.

For further details about optimal designs, the analyst isreferred to
Montgomery (2001).
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4.3.5.How can | tell if a particular
experimental design is good for my
application?

Assess
Relative to
the Sx
Design
Principles

Graphically
Check for
Univariate
Balance

If you have a design, generated by whatever method, in hand, how can
you assess its after-the-fact goodness? Such checks can potentially
parallel thelist of the six general design principles. The design can be
assessed relative to each of these six principles. For example, does it
have capacity for the primary model, does it have capacity for an
alternative model, etc.

Some of these checks are quantitative and complicated; other checks
are simpler and graphical. The graphical checks are the most easily
done and yet are among the most informative. We include two such
graphical checks and one quantitative check.

If you have a design that claimsto be globally good in k factors, then
generally that design should be locally good in each of the individual k
factors. Checking high-dimensional global goodnessis difficult, but
checking low-dimensional local goodnessis easy. Generate k counts
plots, with the levels of factors . plotted on the horizontal axis of each

plot and the number of design points for each level in factor z. on the

vertical axis. For most good designs, these counts should be about the
same (= balance) for all levels of afactor. Exceptions exist, but such
balance is alow-level characteristic of most good designs.
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If you have adesign that is purported to be globally good in k factors,
then generally that design should be locally good in al pairs of the
individual k factors. Graphically check for such 2-way balance by
generating plotsfor all pairs of factors, where the horizontal axis of a
given plotis r; and the vertical axis is.rj-. The response variable ; does

NOT come into play in these plots. We are only interested in
characteristics of the design, and so only the I variables are involved.
The 2-way plots of most good designs have a certain symmetric and
balanced look about them--all combination points should be covered
and each combination point should have about the same number of
points.

For optimal designs, metrics exist (D-efficiency, A-efficiency, etc.) that
can be computed and that reflect the quality of the design. Further,
relative ratios of standard deviations of the coefficient estimators and
relative ratios of predicted values can be computed and compared for
such designs. Such calculations are commonly performed in computer
packages which specialize in the generation of optimal designs.
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4.4.Data Analysis for Process Modeling

Building a This section contains detailed discussions of the necessary steps for

Good Model  developing a good process model after data have been collected. A
general model-building framework, applicable to multiple statistical
methods, is described with method-specific points included when

necessary.

Contents: 1. What are the basic steps for devel oping an effective process

Section 4 model ?

2. How do | select afunction to describe my process?

1.
2.
3.

I ncorporating Scientific Knowledge into Function Selection

Using the Data to Select an Appropriate Function
Using Methods that Do Not Require Function Specification

3. How are estimates of the unknown parameters obtal ned?

1.
2.

Least Squares
Weighted Least Squares

4. How can | tell if amodd fits my data?

1.

How can | assess the sufficiency of the functional part of
the model ?

How can | detect non-constant variation across the data?

How can | tell if there was drift in the measurement
process?

How can | assess whether the random errors are
independent from one to the next?

How can | test whether or not the random errors are
normally distributed?

How can | test whether any significant terms are missing or
misspecified in the functional part of the model ?

How can | test whether all of the terms in the functional
part of the model are necessary?
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5. If my current model does not fit the data well, how can | improve
it?

1. Updating the Function Based on Residual Plots
2. Accounting for Non-Constant V ariation Across the Data

3. Accounting for Errors with a Non-Normal Distribution
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4.4, Data Analysis for Process Modeling

4.4.1.What are the basic steps for developing an
effective process model?

Basic Steps
Provide
Universal
Framework

Basic Seps
of Model
Building

A
Variation
on the
Basic Seps

The basic steps used for model-building are the same across all modeling methods. The
details vary somewhat from method to method, but an understanding of the common steps,
combined with the typical underlying assumptions needed for the analysis, provides a

framework in which the results from almost any method can be interpreted and understood.

The basic steps of the model-building process are:
1. model selection
2. mode fitting, and
3. model validation.

These three basic steps are used iteratively until an appropriate model for the data has been
developed. In the model selection step, plots of the data, process knowledge and
assumptions about the process are used to determine the form of the model to befit to the
data. Then, using the selected model and possibly information about the data, an
appropriate model-fitting method is used to estimate the unknown parameters in the model.
When the parameter estimates have been made, the model is then carefully assessed to see
if the underlying assumptions of the analysis appear plausible. If the assumptions seem
valid, the model can be used to answer the scientific or engineering questions that prompted
the modeling effort. If the model validation identifies problems with the current model,
however, then the modeling processiis repeated using information from the model
validation step to select and/or fit an improved model.

The three basic steps of process modeling described in the paragraph above assume that the
data have already been collected and that the same data set can be used to fit all of the
candidate models. Although thisis often the case in model-building situations, one variation
on the basic model-building sequence comes up when additional data are needed to fit a
newly hypothesized model based on amodel fit to theinitial data. In this case two
additional steps, experimental design and data collection, can be added to the basic
sequence between model selection and model -fitting. The flow chart below shows the basic

model -fitting sequence with the integration of the related data collection steps into the
model-building process.
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Examplesillustrating the model-building sequence in real applications can be found in the
case studies in Section 4.6. The specific tools and techniques used in the basic

model-building steps are described in the remainder of this section.

Design of Of course, considering the model selection and fitting before collecting the initial datais

Initial also agood idea. Without data in hand, a hypothesis about what the data will 1ook likeis

Experiment  needed in order to guess what the initial model should be. Hypothesizing the outcome of an
experiment is not always possible, of course, but efforts made in the earliest stages of a
project often maximize the efficiency of the whole model-building process and result in the
best possible models for the process. More detail s about experimental design can be found
in Section 4.3 and in Chapter 5: Process |mprovement.
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4.4.2. How do | select a function to describe
my process?

Synthesis of
Process

I nformation
Necessary

Answer Not
Provided by
Satistics
Alone

Selecting amodel of the right form to fit a set of data usually requires
the use of empirical evidence in the data, knowledge of the process and
some trial-and-error experimentation. As mentioned on the previous
page, model building is aways an iterative process. Much of the need to
iterate stems from the difficulty ininitially selecting a function that
describes the data well. Details about the data are often not easily visible
in the data as originally observed. The fine structure in the data can
usually only be elicited by use of model-building tools such as residual
plots and repeated refinement of the model form. Asaresult, itis
important not to overlook any of the sources of information that indicate
what the form of the model should be.

Sometimes the different sources of information that need to be
integrated to find an effective model will be contradictory. An open
mind and awillingness to think about what the data are saying is
important. Maintaining balance and looking for aternate sources for
unusual effects found in the data are also important. For example, in the
load cell calibration case study the statistical analysis pointed out that
the model initially thought to be appropriate did not account for all of
the structure in the data. A refined model was developed, but the
appearance of an unexpected result brings up the question of whether
the original understanding of the problem was inaccurate, or whether the
need for an alternate model was due to experimental artifacts. In the
load cell problem it was easy to accept that the refined model was closer
to the truth, but in a more complicated case additional experiments
might have been needed to resolve the issue.
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Another helpful ingredient in model selection is awide knowledge of
the shapes that different mathematical functions can assume. Knowing
something about the models that have been found to work well in the
past for different application types aso helps. A menu of different
functions on the next page, Section 4.4.2.1. (links provided below),
provides one way to learn about the function shapes and flexibility.
Section 4.4.2.2. discusses how general function features and qualitative
scientific information can be combined to help with model selection.
Finally, Section 4.4.2.3. points to methods that don't require
specification of a particular function to be fit to the data, and how
models of those types can be refined.

1. Incorporating Scientific Knowledge into Function Selection
2. Using the Datato Select an Appropriate Function
3. Using Methods that Do Not Require Function Specification
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4.4.2.1.Incorporating Scientific Knowledge
Into Function Selection

Choose Incorporating scientific knowledge into selection of the function
Functions used in aprocess model is clearly critical to the success of the
Whose model. When a scientific theory describing the mechanics of a
Properties physical system can provide a complete functional form for the
Match the process, then that type of function makes an ideal starting point for
Process model development. There are many cases, however, for which there

Isincomplete scientific information available. In these casesit is
considerably less clear how to specify afunctional form to initiate
the modeling process. A practical approach isto choose the simplest
possible functions that have properties ascribed to the process.

Example: For example, if you are modeling concrete strength as a function of
Concrete curing time, scientific knowledge of the process indicates that the
Srength Versus  strength will increase rapidly at first, but then level off asthe
Curing Time hydration reaction progresses and the reactants are converted to their

new physical form. The leveling off of the strength occurs because
the speed of the reaction slows down as the reactants are converted
and unreacted materials are less likely to be in proximity all of the
time. In theory, the reaction will actually stop altogether when the
reactants are fully hydrated and are completely consumed. However,
afull stop of thereaction isunlikely in reality because thereis
always some unreacted material remaining that reacts increasingly
slowly. As aresult, the process will approach an asymptote at its
final strength.
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4.4.2.1. Incorporating Scientific Knowledge into Function Selection

Considering this general scientific information, modeling this
process using a straight line would not reflect the physical aspects of
this process very well. For example, using the straight-line model,
the concrete strength would be predicted to continue increasing at
the same rate over its entire lifetime, though we know that is not
how it behaves. The fact that the response variable in a straight-line
model is unbounded as the predictor variable becomes extremeis
another indication that the straight-line model is not realistic for
concrete strength. In fact, this relationship between the response and
predictor as the predictor becomes extreme is common to all
polynomia models, so even a higher-degree polynomial would
probably not make a good model for describing concrete strength. A
higher-degree polynomia might be able to curve toward the data as
the strength leveled off, but it would eventually have to diverge from
the data because of its mathematical properties.

A more reasonable function for modeling this process might be a
rational function. A rational function, which isaratio of two
polynomials of the same predictor variable, approaches an
asymptote if the degrees of the polynomialsin the numerator and
denominator are the same. It is still avery ssmple model, although it
Is nonlinear in the unknown parameters. Even if arational function
does not ultimately proveto fit the datawell, it makes a good
starting point for the modeling process because it incorporates the
general scientific knowledge we have of the process, without being
overly complicated. Within the family of rational functions, the
simplest model isthe "linear over linear" rational function

S+ iz

so thiswould probably be the best model with which to start. If the
linear-over-linear model is not adequate, then the initial fit can be
followed up using a higher-degree rational function, or some other
type of model that also has a horizontal asymptote.
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Although the concrete strength example makes a good case for
Incorporating scientific knowledge into the model, it is not
necessarily a good ideato force a process model to follow all of the
physical properties that the process must follow. At first glance it
seems like incorporating physical properties into a process model
could only improve it; however, incorporating properties that occur
outside the region of interest for a particular application can actually
sacrifice the accuracy of the model "where it counts' for increased
accuracy whereit isn't important. As aresult, physical properties
should only be incorporated into process models when they directly
affect the process in the range of the data used to fit the model or in
the region in which the model will be used.

In order to translate general process properties into mathematical
functions whose forms may be useful for model development, itis
necessary to know the different shapes that various mathematical
functions can assume. Unfortunately there is no easy, systematic
way to obtain thisinformation. Families of mathematical functions,
like polynomials or rational functions, can assume quite different
shapes that depend on the parameter values that distinguish one
member of the family from another. Because of the wide range of
potential shapes these functions may have, even determining and
listing the general properties of relatively simple families of
functions can be complicated. Section 8 of this chapter gives some
of the properties of ashort list of ssmple functions that are often
useful for process modeling. Another reference that may be useful is
the Handbook of Mathematical Functions by Abramowitz and

Stegun [1964]. The Digital Library of Mathematical Functions, an

el ectronic successor to the Handbook of Mathematical Functions
that is under development at NIST, may also be helpful.
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4.4.2.2.Using the Data to Select an Appropriate Function

Plot the Data

Example

Straight-Line
Model Looks
Appropriate

The best way to select an initial model isto plot the data. Even if you have a good idea of what
the form of the regression function will be, plotting allows a preliminary check of the underlying
assumptions required for the model fitting to succeed. Looking at the data also often provides
other insights about the process or the methods of data collection that cannot easily be obtained
from numerical summaries of the data alone.

The data from the Pressure/Temperature example is plotted below. From the plot it looks like a

straight-line model will fit the datawell. Thisis as expected based on Charles Law. In this case
there are no signs of any problems with the process or data collection.
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Start with Least
Complex
Functions First

Quadratic
Polynomial a
Good Sarting
Point

Developing
Modelsin
Higher
Dimensions

A key point when selecting amodel isto start with the ssmplest function that looks as though it
will describe the structure in the data. Complex models are fine if required, but they should not be
used unnecessarily. Fitting models that are more complex than necessary means that random
noise in the datawill be modeled as deterministic structure. Thiswill unnecessarily reduce the
amount of data available for estimation of the residual standard deviation, potentially increasing
the uncertainties of the results obtained when the model is used to answer engineering or
scientific questions. Fortunately, many physical systems can be modeled well with straight-line,
polynomial, or smple nonlinear functions.
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When the function describing the deterministic variability in the response variable depends on
several predictor (input) variables, it can be difficult to see how the different variables relate to
one another. One way to tackle this problem that often proves useful isto plot cross-sections of
the data and build up afunction one dimension at atime. This approach will often shed more light
on the relationships between the different predictor variables and the response than plots that
lump different levels of one or more predictor variables together on plots of the response variable
versus another predictor variable.
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Polymer
Relaxation
Example

Polymer
Relaxation
Data

For example, materials scientists are interested in how cylindrical polymer samples that have
been twisted by afixed amount relax over time. They are also interested in finding out how
temperature may affect this process. As aresult, both time and temperature are thought to be
important factors for describing the systematic variation in the relaxation data plotted below.
When the torque is plotted against time, however, the nature of the relationship is not clearly
shown. Similarly, when torque is plotted versus the temperature the effect of temperatureisaso
unclear. The difficulty in interpreting these plots arises because the plot of torque versus time
includes datafor several different temperatures and the plot of torque versus temperature includes
data observed at different times. If both temperature and time are necessary parts of the function
that describes the data, these plots are collapsing what really should be displayed as a
three-dimensional surface onto atwo-dimensional plot, muddying the picture of the data.
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Multiplots If cross-sections of the data are plotted in multiple plots instead of lumping different explanatory
Reveal variable values together, the relationships between the variables can become much clearer. Each
Structure cross-sectional plot below shows the relationship between torque and time for a particular

temperature. Now the relationship between torque and time for each temperatureis clear. It is
also easy to see that the relationship differs for different temperatures. At atemperature of 25
degreesthere is a sharp drop in torque between 0 and 20 minutes and then the relaxation slows.
At atemperature of 75 degrees, however, the relaxation drops at arate that is nearly constant over
the whole experimental time period. The fact that the profiles of torque versus time vary with
temperature confirms that any functional description of the polymer relaxation process will need
to include temperature.

Cross-Sections
of the Data
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4.4.2.2. Using the Data to Select an Appropriate Function

Cross-Sectional
Models Provide
Further Insight

Cross-Section
Parameters vs.
Temperature

Further insight into the appropriate function to use can be obtained by separately modeling each
cross-section of the data and then relating the individual models to one another. Fitting the
accepted stretched exponential relationship between torque (3;) and time (i),

I‘.
v=05+5 EKP'[— {.—l}ﬂs)

Ba
to each cross-section of the polymer data and then examining plots of the estimated parameters
versus temperature roughly indicates how temperature should be incorporated into a model of the
polymer relaxation data. The individua stretched exponentials fit to each cross-section of the data
are shown in the plot above as solid curves through the data. Plots of the estimated values of each
of the four parametersin the stretched exponential versus temperature are shown below.
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The solid line near the center of each plot of the cross-sectional parameters from the stretched
exponentia isthe mean of the estimated parameter values across all six levels of temperature.
The dashed lines above and below the solid reference line provide approximate bounds on how
much the parameter estimates could vary due to random variation in the data. These bounds are
based on the typical value of the standard deviations of the estimates from each individual
stretched exponential fit. From these plotsit is clear that only the values of (35 significantly differ
from one another across the temperature range. In addition, there is a clear increasing trend in the
parameter estimates for ;3. For each of the other parameters, the estimate at each temperature
falls within the uncertainty bounds and no clear structureisvisible.
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4.4.2.2. Using the Data to Select an Appropriate Function

Based on the plot of estimated ;3 values above, augmenting the i3 term in the standard stretched
exponential so that the new denominator is quadratic in temperature (denoted by r-) should
provide a good starting model for the polymer relaxation process. The choice of aquadratic in
temperature is suggested by the slight curvature in the plot of the individually estimated
parameter values. The resulting model is

I a
¥ =5+ Brexp(— fs
[: [l:.ﬂz + Bix2 + _ﬂs-‘?%)) )
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4. Process Modeling

4.4, Data Analysis for Process Modeling

4.4.2. How do | select afunction to describe my process?

4.4.2.3.Using Methods that Do Not Require Function

Functional
Form Not
Needed, but
Some | nput
Required

I nput
Parameters
Control
Function
Shape

Sarting
Smple still
Best

Function
Specification
for LOESS

Specification

Although many modern regression methods, like LOESS, do not require the user to specify a

single type of function to fit the entire data set, some initial information still usually needsto be
provided by the user. Because most of these types of regression methods fit a series of smple
local models to the data, one quantity that usually must be specified is the size of the
neighborhood each ssimple function will describe. This type of parameter is usually called the
bandwidth or smoothing parameter for the method. For some methods the form of the simple
functions must also be specified, while for others the functional form is afixed property of the
method.

The smoothing parameter controls how flexible the functional part of the model will be. This, in
turn, controls how closely the function will fit the data, just as the choice of a straight line or a
polynomial of higher degree determines how closely atraditional regression model will track the
deterministic structure in a set of data. The exact information that must be specified in order to fit
the regression function to the datawill vary from method to method. Some methods may require
other user-specified parameters require, in addition to a smoothing parameter, to fit the regression
function. However, the purpose of the user-supplied information is similar for all methods.

Asfor more traditional methods of regression, simple regression functions are better than
complicated onesin local regression. The complexity of aregression function can be gauged by
its potential to track the data. With traditional modeling methods, in which a global function that
describes the datais given explictly, it isrelatively easy to differentiate between simple and
complicated models. With local regression methods, on the other hand, it can sometimes difficult
to tell how simple a particular regression function actually is based on the inputs to the procedure.
Thisis because of the different ways of specifying local functions, the effects of changesin the
smoothing parameter, and the relationships between the different inputs. Generally, however, any
local functions should be as simple as possible and the smoothing parameter should be set so that
each local function isfit to alarge subset of the data. For example, if the method offers a choice
of local functions, a straight line would typically be a better starting point than a higher-order
polynomial or a statistically nonlinear function.

To use LOESS, the user must specify the degree, d, of the local polynomial to be fit to the data,
and the fraction of the data, g, to be used in each fit. In this case, the ssmplest possibleinitial
function specification isd=1 and g=1. Whileit isrelatively easy to understand how the degree of
the local polynomial affects the ssmplicity of theinitial model, it is not as easy to determine how
the smoothing parameter affects the function. However, plots of the data from the computational
example of LOESS in Section 1 with four potential choices of theinitial regression function show

that the simplest LOESS function, with d=1 and g=1, is too simple to capture much of the
structure in the data.

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd423.htm (1 of 2) [11/14/2003 5:50:34 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/dep/dep144.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/dep/dep144.htm

4.4.2.3. Using Methods that Do Not Require Function Specification

LOESS

Regr on d=1,g=1

Functions g - g

with Different o T . o

Initial & . &

Parameter = / e 2

Specifications =7 =7
81 - 8

&0
&0

100 150 200 250
100 150 200 250

50
50

Experience Although the smplest possible LOESS function is not flexible enough to describe the data well,

Suggests any of the other functions shown in the figure would be reasonable choices. All of the latter
Good Values  functions track the data well enough to allow assessment of the different assumptions that need to
to Use be checked before deciding that the model really describes the datawell. None of these functions

is probably exactly right, but they all provide a good enough fit to serve as a starting point for
model refinement. The fact that there are several LOESS functions that are similar indicates that
additional information is needed to determine the best of these functions. Although it is debatable,
experience indicates that it is probably best to keep the initial function simple and set the
smoothing parameter so each local function isfit to arelatively small subset of the data.
Accepting this principle, the best of these initial modelsis the one in the upper right corner of the
figure with d=1 and g=0.5.
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4.4.3. How are estimates of the unknown parameters obtained?
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4. Process Modeling
4.4. Data Analysisfor Process Modeling

4.4.3.How are estimates of the unknown
parameters obtained?

Parameter After selecting the basic form of the functional part of the model, the

Estimation next step in the model-building process is estimation of the unknown

in General parameters in the function. In general, thisis accomplished by solving
an optimization problem in which the objective function (the function
being minimized or maximized) relates the response variable and the
functional part of the model containing the unknown parametersin a
way that will produce parameter estimates that will be close to the true,
unknown parameter values. The unknown parameters are, loosely
speaking, treated as variables to be solved for in the optimization, and
the data serve as known coefficients of the objective function in this
stage of the modeling process.

In theory, there are as many different ways of estimating parameters as
there are objective functions to be minimized or maximized. However, a
few principles have dominated because they result in parameter
estimators that have good statistical properties. The two major methods
of parameter estimation for process models are maximum likelihood and
least squares. Both of these methods provide parameter estimators that
have many good properties. Both maximum likelihood and least squares
are sengitive to the presence of outliers, however. There are also many
newer methods of parameter estimation, called robust methods, that try
to balance the efficiency and desirable properties of least squares and
maximum likelihood with alower sensitivity to outliers.
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4.4.3. How are estimates of the unknown parameters obtained?

Overviewof  Although robust techniques are valuable, they are not as well developed

Section 4.3 as the more traditional methods and often require specialized software
that is not readily available. Maximum likelihood also requires
specialized algorithms in general, although there are important special
cases that do not have such arequirement. For example, for data with
normally distributed random errors, the least squares and maximum
likelihood parameter estimators are identical. As aresult of these
software and developmental issues, and the coincidence of maximum
likelihood and least squares in many applications, this section currently
focuses on parameter estimation only by least squares methods. The
remainder of this section offers some intuition into how |least squares
works and illustrates the effectiveness of this method.

Contents of 1. Least Squares
Section 4.3 2. Weighted L east Squares

NIST
SEMATECH

'HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]|

http://www.itl. nist.gov/div898/handbook/pmd/section4/pmd43.htm (2 of 2) [11/14/2003 5:50:34 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/

4.4.3.1. Least Squares
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4. Process Modeling

4.4, Data Analysis for Process Modeling

4.4.3. How are estimates of the unknown parameters obtained?

4.4.3.1.Least Squares

General LS
Criterion

LSfor
Straight
Line

In least squares (L S) estimation, the unknown values of the parameters, i7g, (31, . . ., inthe
regression function, f 3’) are estimated by finding numerical values for the parameters that

minimize the sum of the squared deviations between the observed responses and the functional
portion of the model. Mathematically, the least (sum of) squares criterion that is minimized to
obtain the parameter estimatesis

1

2 =z v — F(Z: B

As previously noted, Jg, 31, . . . are treated as the variables in the optimization and the predictor
variable values, 1 , Tg,...a€ treated as coefficients. To emphasize the fact that the estimates

of the parameter values are not the same as the true values of the parameters, the estimates are
denoted by 3 3o, ﬁ . For linear models, the least squares minimization is usually done

anayticaly us ng cal culus For nonlinear models, on the other hand, the minimization must
almost always be done using iterative numerical algorithms.

Toillustrate, consider the straight-line model,
Y=+ dr+e

For thismodel the least squares estimates of the parameters would be computed by minimizing

= z Jn‘l‘r-arl" 7

Doing this by
1. taking partial derivatives of ) with respect to 3, and 3,
2. setting each partial derivative equal to zero, and

3. solving the resulting system of two equations with two unknowns
yields the following estimators for the parameters:

w1z — 2)(w — )

"j = =5
: (i —1)°
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4.4.3.1. Least Squares

Quality of
Least
Squares
Estimates

Comparison
of LSLine
and True
Line

Go=¥— BT

These formulas are instructive because they show that the parameter estimators are functions of
both the predictor and response variables and that the estimators are not independent of each
other unless ¥ = (J. Thisisclear because the formula for the estimator of the intercept depends
directly on the value of the estimator of the slope, except when the second term in the formulafor
SD drops out due to multiplication by zero. This means that if the estimate of the slope deviates a

lot from the true slope, then the estimate of the intercept will tend to deviate alot from its true
value too. This lack of independence of the parameter estimators, or more specificaly the
correlation of the parameter estimators, becomes important when computing the uncertainties of
predicted values from the model. Although the formulas discussed in this paragraph only apply to
the straight-line model, the relationship between the parameter estimators is analogous for more
complicated models, including both statistically linear and statistically nonlinear models.

From the preceding discussion, which focused on how the least squares estimates of the model
parameters are computed and on the relationship between the parameter estimates, it is difficult to
picture exactly how good the parameter estimates are. They are, in fact, often quite good. The plot
below shows the data from the Pressure/ Temperature example with the fitted regression line and
the true regression line, which is known in this case because the data were ssimulated. It is clear
from the plot that the two lines, the solid one estimated by |east squares and the dashed being the
true line obtained from the inputs to the simulation, are ailmost identical over the range of the
data. Because the least squares line approximates the true line so well in this case, the least
squares line will serve as a useful description of the deterministic portion of the variation in the
data, even though it is not a perfect description. While this plot is just one example, the
relationship between the estimated and true regression functions shown hereisfairly typical.
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Quantifying  From the plot above it is easy to see that the line based on the least squares estimates of 3, and
the Quality 3 isagood estimate of the true line for these simulated data. For real data, of course, this type of

of the Fit direct comparison is not possible. Plots comparing the model to the data can, however, provide

for Real valuable information on the adequacy and usefulness of the model. In addition, another measure

Data of the average quality of thefit of aregression function to a set of data by least squares can be
guantified using the remaining parameter in the model, ¥, the standard deviation of the error term
in the model.

Like the parameters in the functional part of the model, & is generally not known, but it can also
be estimated from the least squares equations. The formulafor the estimate is

6 = o

[ i fEA

= \'I. —

with 72 denoting the number of observationsin the sample and  is the number of parametersin

the functional part of the model. & is often referred to as the "residual standard deviation" of the
process.
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4.4.3.1. Least Squares

Because & measures how the individual values of the response variable vary with respect to their
true values under f [: I 3’) it also contains information about how far from the truth quantities

derived from the data, such as the estimated values of the parameters, could be. Knowledge of the
approximate value of ¥ plus the values of the predictor variable values can be combined to
provide estimates of the average deviation between the different aspects of the model and the
corresponding true values, quantities that can be related to properties of the process generating
the data that we would like to know.

More information on the correlation of the parameter estimators and computing uncertainties for

different functions of the estimated regression parameters can be found in Section 5.
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4. Process Modeling

4.4, Data Analysisfor Process Modeling

4.4.3. How are estimates of the unknown parameters obtained?

4.4.3.2.Weighted Least Squares

General
WLS
Criterion

As mentioned in Section 4.1, weighted least squares (WLS) regression
isuseful for estimating the values of model parameters when the
response values have differing degrees of variability over the
combinations of the predictor values. As suggested by the name,
parameter estimation by the method of weighted least squaresis closely
related to parameter estimation by "ordinary”, "regular”, "unweighted"

or "egually-welghted" |east squares.

In weighted least squares parameter estimation, as in regular least
squares, the unknown values of the parameters, (g, 1, . . ., inthe
regression function are estimated by finding the numerical valuesfor the
parameter estimates that minimize the sum of the squared deviations
between the observed responses and the functional portion of the model.
Unlike least squares, however, each term in the weighted least squares
criterion includes an additional weight, 34, that determines how much
each observation in the data set influences the final parameter estimates.
The weighted least squares criterion that is minimized to obtain the
parameter estimatesis

Q= z [y — (7 B)
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4.4.3.2. Weighted Least Squares

Some Points  Likeregular least squares estimators:

ggﬁ%: 1. The weighted least squares estimators are denoted by 3. /3., . . .
with to emphasize the fact that the estimators are not the same as the
Regular LS true values of the parameters.
(But Not
Always!!!) 2. j[ jl are treated as the "variables' in the optimization,
by g e e
while values of the response and predictor variables and the
weights are treated as constants.
3. The parameter estimators will be functions of both the predictor
and response variables and will generally be correlated with one
another. (WLS estimators are also functions of the weights, 14;..)
4. Weighted least squares minimization is usually done analytically
for linear models and numerically for nonlinear models.
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4.4.4. How can | tell if a model fits my data?
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4. Process Modeling
4.4, Data Analysis for Process Modeling

4.4.4.How can | tell if a model fits my data?

EZ1sNot Model validation is possibly the most important step in the model building sequence. It is also one
Enough! of the most overlooked. Often the validation of amodel seems to consist of nothing more than

quoting the F 2 gtatistic from the fit (which measures the fraction of the total variability in the

response that is accounted for by the model). Unfortunately, ahigh & % value does not guarantee
that the model fits the datawell. Use of amodel that does not fit the data well cannot provide good
answers to the underlying engineering or scientific questions under investigation.

Main There are many statistical tools for model validation, but the primary tool for most process
Tool: modeling applicationsis graphical residua analysis. Different types of plots of the residuals (see

Graphical  definition below) from afitted model provide information on the adequacy of different aspects of

Egg@lﬂ the model. Numerical methods for mode! validation, such asthe F 2 statistic, are also useful, but
usually to alesser degree than graphical methods. Graphical methods have an advantage over
numerical methods for model validation because they readily illustrate a broad range of complex
aspects of the relationship between the model and the data. Numerical methods for model validation
tend to be narrowly focused on a particular aspect of the relationship between the model and the
data and often try to compress that information into a single descriptive number or test result.

Numerical  Numerical methods do play an important role as confirmatory methods for graphical techniques,

Methods however. For example, the |ack-of-fit test for assessing the correctness of the functional part of the

Forte model can aid in interpreting a borderline residual plot. There are also afew modeling situationsin
which graphical methods cannot easily be used. In these cases, numerical methods provide a
fallback position for model validation. One common situation when numerical validation methods
take precedence over graphical methods is when the number of parameters being estimated is
relatively close to the size of the data set. In this situation residual plots are often difficult to
interpret due to constraints on the residuals imposed by the estimation of the unknown parameters.
One areain which this typically happens s in optimization applications using designed
experiments. Logistic regression with binary datais another areain which graphical residual
analysis can be difficult.

Residuals The residuals from afitted model are the differences between the responses observed at each
combination values of the explanatory variables and the corresponding prediction of the response
computed using the regression function. Mathematically, the definition of the residual for the ith
observation in the data set is written

—
-

ei = yi — fTi

(=¥

)

with ;. denoting the ith response in the data set and T'; represents the list of explanatory variables,
each set at the corresponding values found in the ith observation in the data set.
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4.4.4. How can | tell if a model fits my data?

Example The data listed below are from the Pressure/Temperature example introduced in Section 4.1.1. The

first column shows the order in which the observations were made, the second column indicates the
day on which each observation was made, and the third column gives the ambient temperature
recorded when each measurement was made. The fourth column lists the temperature of the gas
itself (the explanatory variable) and the fifth column contains the observed pressure of the gas (the
response variable). Finally, the sixth column gives the corresponding values from the fitted
straight-line regression function.

P = 7.740605 + 3.030123T

and the last column lists the residual s, the difference between columns five and six.

Data,
Fitted Run Ambi ent Fitted
VﬁP&*& Order Day Tenperature Tenperature Pressure Val ue Resi dua
Residuals 1 1 23. 820 54. 749 225.066  222.920 2. 146
2 1 24. 120 23. 323 100. 331 99. 411 0. 920
3 1 23.434 58. 775 230.863  238.744 -7.881
4 1 23.993 25. 854 106. 160 109. 359 -3.199
5 1 23. 375 68. 297 277.502  276. 165 1.336
6 1 23. 233 37. 481 148. 314 155. 056 -6.741
7 1 24.162 49. 542 197.562  202. 456 -4. 895
8 1 23. 667 34.101 138. 537 141. 770 -3.232
9 1 24. 056 33.901 137. 969 140. 983 -3.014
10 1 22.786 29. 242 117. 410 122. 674 -5.263
11 2 23.785 39. 506 164. 442 163. 013 1.429
12 2 22.987 43. 004 181. 044 176. 759 4. 285
13 2 23.799 53. 226 222.179 216. 933 5. 246
14 2 23. 661 54. 467 227.010 221. 813 5.198
15 2 23. 852 57. 549 232. 496 233. 925 -1.429
16 2 23. 379 61. 204 253. 557 248. 288 5. 269
17 2 24. 146 31. 489 139.894  131.506 8. 388
18 2 24. 187 68. 476 273.931 276. 871 -2.940
19 2 24. 159 51. 144 207.969  208. 753 -0.784
20 2 23. 803 68. 774 280. 205 278. 040 2. 165
21 3 24. 381 55. 350 227.060  225. 282 1.779
22 3 24. 027 44. 692 180. 605 183. 396 -2.791
23 3 24. 342 50. 995 206. 229  208. 167 -1.938
24 3 23. 670 21. 602 91. 464 92. 649 -1.186
25 3 24. 246 54.673 223.869  222.622 1. 247
26 3 25. 082 41. 449 172.910 170. 651 2. 259
27 3 24.575 35. 451 152. 073 147. 075 4.998
28 3 23. 803 42. 989 169. 427 176. 703 -7.276
29 3 24. 660 48. 599 192. 561 198. 748 -6.188
30 3 24. 097 21. 448 94. 448 92. 042 2.406
31 4 22.816 56. 982 222.794 231. 697 -8.902
32 4 24. 167 47.901 199. 003 196. 008 2. 996
33 4 22.712 40. 285 168. 668 166. 077 2.592
34 4 23.611 25. 609 109. 387 108. 397 0. 990
35 4 23. 354 22.971 08. 445 98. 029 0.416
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If the model fit to the data were correct, the residuals would approximate the random errors that
make the relationship between the explanatory variables and the response variable a statistical
relationship. Therefore, if the residuals appear to behave randomly, it suggests that the model fits
the data well. On the other hand, if non-random structure is evident in the residuals, itisaclear sign
that the model fits the data poorly. The subsections listed below detail the types of plotsto useto
test different aspects of amodel and give guidance on the correct interpretations of different results
that could be observed for each type of plot.

How can | assess the sufficiency of the functional part of the model ?

How can | detect non-constant variation across the data?

How can | tell if there was drift in the process?

How can | assess whether the random errors are independent from one to the next?

How can | test whether or not the random errors are distributed normally?

o a0 bk 0w DR

How can | test whether any significant terms are missing or misspecified in the functional

part of the model ?

7. How can | test whether all of the termsin the functional part of the model are necessary?
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4.4.4.1. How can | assess the sufficiency of the functional part of the model?
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4.4, Data Analysis for Process Modeling

4.4.4. How can | tell if amodel fits my data?

4.4.4.1.How can | assess the sufficiency of the

Main Tool:
Scatter Plots

Pressure/
Temperature
Example

functional part of the model?

Scatter plots of the residuals versus the predictor variables in the model and versus potential
predictors that are not included in the model are the primary plots used to assess sufficiency of
the functional part of the model. Plotsin which the residuals do not exhibit any systematic
structure indicate that the model fits the datawell. Plots of the residuals versus other predictor
variables, or potential predictors, that exhibit systematic structure indicate that the form of the
function can be improved in some way.

Theresidual scatter plot below, of the residuals from a straight line fit to the
Pressure/Temperature data introduced in Section 4.1.1. and also discussed in the previous section,
does not indicate any problems with the model. The reference line at 0 emphasi zes that the
residuals are split about 50-50 between positive and negative. There are no systematic patterns

apparent in this plot. Of course, just asthe £ ? gtatistic cannot justify a particular model on its
own, no single residual plot can completely justify the adoption of a particular model either. If a
plot of these residuals versus another variable did show systematic structure, the form of model
with respect to that variable would need to be changed or that variable, if not in the model, would
need to be added to the model. It isimportant to plot the residuals versus every available variable
to ensure that a candidate model is the best model possible.
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Residuals from the Straight-Line Model

Importance of ~ Oneimportant class of potential predictor variables that is often overlooked is environmental

Environmental  variables. Environmental variables include things like ambient temperature in the areawhere

Variables measurements are being made and ambient humidity. In most cases environmental variables are
not expected to have any noticeable effect on the process, but it is always good practice to check
for unanticipated problems caused by environmental conditions. Sometimes the catch-all
environmental variables can also be used to assess the validity of amodel. For example, if an
experiment isrun over several days, aplot of the residuals versus day can be used to check for
differences in the experimental conditions at different times. Any differences observed will not
necessarily be attributable to a specific cause, but could justify further experimentsto try to
identify factors missing from the model, or other model misspecifications. The two residual plots
below show the pressure/temperature residual's versus ambient lab temperature and day. In both
cases the plots provide further evidence that the straight line model gives an adequate description
of the data. The plot of the residuals versus day does ook a little suspicious with aslight cyclic
pattern between days, but doesn't indicate any overwhelming problems. It is likely that this
apparent difference between days isjust due to the random variation in the data.
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The examples of residual plots given above are for the smplest possible case, straight line
regression vialeast squares, but the residual plots are used in exactly the same way for almost all
of the other statistical methods used for model building. For example, the residual plot below is
for the LOESS moddl fit to the thermocouple calibration data introduced in Section 4.1.3.2. Like
the plots above, this plot does not signal any problems with the fit of the LOESS model to the
data. The residuals are scattered both above and below the reference line at al temperatures.
Residual s adjacent to one another in the plot do not tend to have similar signs. There are no
obvious systematic patterns of any typein this plot.
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Based on the plot of voltage (response) versus the temperature (predictor) for the thermocouple
calibration data, a quadratic model would have been areasonable initial model for these data. The
quadratic model isthe simplest possible model that could account for the curvature in the data.
The scatter plot of the residuals versus temperature for a quadratic model fit to the data clearly
indicates that it is a poor fit, however. Thisresidua plot shows strong cyclic structure in the
residuals. If the quadratic model did fit the data, then this structure would not be left behind in the
residuals. One thing to note in comparing the residual plots for the quadratic and L OESS models,
besides the amount of structure remaining in the datain each case, isthe difference in the scales
of the two plots. The residuals from the quadratic model have arange that is approximately fifty
times the range of the LOESS residuals.
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4, Process Modeling
4.4. Data Analysis for Process Modeling
4.4.4. How can | tell if amodel fits my data?

4.4.4.2. How can | detect non-constant variation across

the data?
Scatter Plots Similar to their use in checking the sufficiency of the functional form of the model, scatter plots
Allow . of the residuals are also used to check the assumption of constant standard deviation of random
Comparison errors. Scatter plots of the residuals versus the explanatory variables and versus the predicted
of Random values from the model allow comparison of the amount of random variation in different parts of
Variation the data. For example, the plot below shows residuals from a straight-line fit to the
ressure/ Temperature data. In this plot the range of the residuals looks essentially constant across
AcrossData  presqyre/T data. In this plot th f the residuals look iall
the levels of the predictor variable, temperature. The scatter in the residuals at temperatures
between 20 and 30 degreesis similar to the scatter in the residual s between 40 and 50 degrees and
between 55 and 70 degrees. This suggests that the standard deviation of the random errorsisthe
same for the responses observed at each temperature.
Residuals
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4.4.4.2. How can | detect non-constant variation across the data?
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To illustrate how the residuals from the Pressure/Temperature data would look if the standard
deviation was not constant across the different temperature levels, amodified version of the data
was simulated. In the modified version, the standard deviation increases with increasing values of
pressure. Situations like this, in which the standard deviation increases with increasing values of
the response, are among the most common ways that hon-constant random variation occurs in
physical science and engineering applications. A plot of the data is shown below. Comparison of
these two versions of the data is interesting because in the original units of the data they don't
look strikingly different.

300

I ' I ' I ' I ' I ' I
2 30 40 50 60 70
Temperature

Theresidual plot from a straight-line fit to the modified data, however, highlights the
non-constant standard deviation in the data. The horn-shaped residual plot, starting with residuals
close together around 20 degrees and spreading out more widely as the temperature (and the
pressure) increases, isatypical plot indicating that the assumptions of the analysis are not
satisfied with this model. Other residual plot shapes besides the horn shape could indicate
non-constant standard deviation as well. For example, if the response variable for a data set
peaked in the middle of the range of the predictors and was small for extreme values of the
predictors, the residuals plotted versus the predictors would look like two horns with the bells
facing one another. In a case like this, a plot of the residuals versus the predicted values would
exhibit the single horn shape, however.
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Residual The use of residual plots to check the assumption of constant standard deviation worksin the
Plots same way for most modeling methods. It is not limited to least squares regression even though
Comparing that is almost always the context in which it is explained. The plot below shows the residuals
Variability from a LOESS fit to the data from the Thermocouple Calibration example. The even spread of the
Applyto Most  residuals across the range of the data does not indicate any changes in the standard deviation,
Methods leading us to the conclusion that this assumption is not unreasonable for these data.
Residuals
from LOESS
Fitto
Thermocouple
Calibration
Data
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One potential pitfall in using residual plots to check for constant standard deviation across the
dataisthat the functional part of the model must adequately describe the systematic variation in
the data. If that is not the case, then the typical horn shape observed in the residual's could be due
to an artifact of the function fit to the data rather than to non-constant variation. For example, in
the Polymer Relaxation example it was hypothesized that both time and temperature are related to
the response variable, torque. However, if asingle stretched exponential model in time was the
initial model used for the process, the residual plots could be misinterpreted fairly easily, leading
to the false conclusion that the standard deviation is not constant across the data. When the
functional part of the model does not fit the data well, the residuals do not reflect purely random
variations in the process. Instead, they reflect the remaining structure in the data not accounted

for by the function. Because the residuals are not random, they cannot be used to answer
questions about the random part of the model. This also emphasizes the importance of plotting the
data before fitting the initial model, even if atheoretical model for the datais available. Looking
at the data before fitting the initial model, at least in this case, would likely forestall this potential
problem.
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Fortunately, even if theinitial model were incorrect, and the residual plot above was made, there
are cluesin this plot that indicate that the horn shape (pointing left this time) is not caused by
non-constant standard deviation. The cluster of residuals at time zero that have aresidual torque
near one indicate that the functional part of the model does not fit the data. In addition, even when
the residuals occur with equal frequency above and below zero, the spacing of the residuals at
each time does not really look random. The spacing is too regular to represent random
measurement errors. At measurement times near the low end of the scale, the spacing of the
points increases as the residuals decrease and at the upper end of the scale the spacing decreases
as the residuals decrease. The patterns in the spacing of the residuals also points to the fact that
the functional form of the model is not correct and needs to be corrected before drawing
conclusions about the distribution of the residuals.
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4. Process Modeling

4.4, Data Analysis for Process Modeling

4.4.4. How can | tell if amode! fits my data?

4.4.4.3.How can | tell if there was drift in the

measurement process?

Run Order "Run order" or "run sequence” plots of the residuals are used to check for drift in the process. The

PlotsReveal  run order residual plot is aspecial type of scatter plot in which each residual is plotted versus an

Driftinthe  index that indicates the order (in time) in which the data were collected. This plot is useful,

Process however, only if data have been collected in arandomized run order, or some other order that is
not increasing or decreasing in any of the predictor variables used in the model. If the data have
been collected in atime order that isincreasing or decreasing with the predictor variables, then
any drift in the process may not be able to be separated from the functional relationship between
the predictors and the response. Thisiswhy randomization is emphasized in experiment design.

Pressure/ To show in amore concrete way how run order plots work, the plot below shows the residuals

Temperature  from a straight-line fit to the Pressure/Temperature data plotted in run order. Comparing the run

Example order plot to alisting of the data with the residuals shows how the residual for the first data point
collected is plotted versus the run order index value 1, the second residual is plotted versus an
index value of 2, and so forth.

Run

Sequence

Plot for the

Pressure/

Temperature

Data
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Taken as awhole, this plot essentially shows that there is only random scatter in the relationship
between the observed pressures and order in which the data were collected, rather than any
systematic relationship. Although there appears to be aslight trend in the residuals when plotted
in run order, the trend is small when measured against short-term random variation in the data,
indicating that it is probably not areal effect. The presence of this apparent trend does emphasize,
however, that practice and judgment are needed to correctly interpret these plots. Although
residual plots are avery useful tool, if critical judgment is not used in their interpretation, you can
see things that aren't there or miss things that are. One hint that the slight slope visible in the data
IS not worrisome in this case is the fact that the residuals overlap zero across al runs. If the
process was drifting significantly, it islikely that there would be some parts of the run sequence
in which the residuals would not overlap zero. If thereis still some doubt about the dlight trend
visible in the data after using this graphical procedure, aterm describing the drift can be added to
the model and tested numerically to seeif it has a significant impact on the results.

To illustrate how the residuals from the Pressure/Temperature data would look if there were drift
in the process, a modified version of the datawas simulated. A small drift of 0.3
units/measurement was added to the process. A plot of the datais shown below. In thisrun
sequence plot aclear, strong trend is visible and there are portions of the run order where the
residuals do not overlap zero. Because the structure is so evident in this case, it iseasy to
conclude that some sort of drift is present. Then, of course, its cause needs to be determined so
that appropriate steps can be taken to eliminate the drift from the process or to account for it in
the model.
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Asin the case when the standard deviation was not constant across the data set, comparison of
these two versions of the data is interesting because the drift is not apparent in either data set
when viewed in the scale of the data. This highlights the need for graphical residual analysis
when devel oping process models.

The run sequence plot, like most types of residual plots, can be used to check for drift in many
regression methods. It is not limited to least squares fitting or one particular type of model. The
run sequence plot below shows the residuals from the fit of the nonlinear model

)

£

(B2 4+ Baxo + Gex3)

y= 3 + 3 exp(—(

to the data from the Polymer Relaxation example. The even spread of the residuals across the
range of the data indicates that there is no apparent drift in this process.

http://www.itl. nist.gov/div898/handbook/pmd/section4/pmd443.htm (3 of 4) [11/14/2003 5:50:37 PM]



http://www.itl.nist.gov/div898/handbook/pmd/section4/plots/mvpt8_f.gif
http://www.itl.nist.gov/div898/handbook/pmd/section4/dep/dep443b.htm

4.4.4.3. How can | tell if there was drift in the measurement process?

Run
Sequence 0145
Plot for
Polymer T
Relaxation |
Data 0.1
[ ]
E L]
[ . .
gnm ) L ¥ ' i
I . ' . .
E L] ' ¥ g ¥ ¥ ' , .
E L . S T oo .—II—J- ________________ R T
L '] W
: . o -
g i ] . L] \ w
ﬁ-ﬂ.ﬂﬁ— . . . . e
L]
[ i . .
L]
=01 —
= L ]
=015 —
[ | ! I T | T [ 1 I
0 10 20 20 10 0 70
Run Order
SE:LSTTECH [ROME [TOOLS & AIDS [SEARCH [BACK MEXT]

http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd443.htm (4 of 4) [11/14/2003 5:50:37 PM]



http://www.itl.nist.gov/div898/handbook/pmd/section4/plots/mvpr3_f.gif
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/

4.4.4.4. How can | assess whether the random errors are independent from one to the next?

P ENGINEERING STATISTICS HANDBOOK

[HOME

4. Process Modeling

"TOOLS & AIDS [SEARCH [BACK ~NEXT|

4.4. Data Analysis for Process Modeling

4.4.4. How can | tell if amodel fits my data?

4.4.4.4. How can | assess whether the random errors are

Lag Plot
Shows
Dependence
Between
Residuals

Interpretation

Examples

Lag Plot:
Temperature/
Pressure
Example

independent from one to the next?

Thelag plot of the residuals, another special type of scatter plot, suggests whether or not the

errors are independent. If the errors are not independent, then the estimate of the error standard
deviation will be biased, potentially leading to improper inferences about the process. The lag
plot works by plotting each residual value versus the value of the successive residual (in
chronological order of observation). Thefirst residual is plotted versus the second, the second
versus the third, etc. Because of the way the residuals are paired, there will be one less point on
this plot than on most other types of residual plots.

If the errors are independent, there should be no pattern or structure in the lag plot. In this case
the points will appear to be randomly scattered across the plot in a scattershot fashion. If thereis
significant dependence between errors, however, some sort of deterministic pattern will likely be
evident.

Lag plots for the Pressure/Temperature example, the Thermocouple Calibration example, and the
Polymer Relaxation example are shown below. The lag plots for these three examples suggest
that the errors from each fit are independent. In each case, the residuals are randomly scattered
about the origin with no apparent structure. The last plot, for the Polymer Relaxation data, shows
an apparent slight correlation between the residuals and the lagged residual s, but experience
suggests that this could easily be due to random error and is not likely to be areal issue. In fact,
the lag plot can also emphasize outlying observations and afew of the larger residuals (in
absolute terms) may be pulling our eyes unduly. The normal probability plot, which is also good
at identifying outliers, will be discussed next, and will shed further light on any unusual pointsin
the data set.
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Some of the different patterns that might be found in the residuals when the errors are not
independent are illustrated in the general discussion of the lag plot. If the residuals are not
random, then time series methods might be required to fully model the data. Some time series
basics are given in Section 4 of the chapter on Process Monitoring. Before jumping to
conclusions about the need for time series methods, however, be sure that a run order plot does
not show any trends, or other structure, in the data. If thereisatrend in the run order plot,
whether caused by drift or by the use of the wrong functional form, the source of the structure
shown in the run order plot will aso induce structure in the lag plot. Structure induced in the lag
plot in thisway does not necessarily indicate dependence in successive random errors. The lag
plot can only be interpreted clearly after accounting for any structure in the run order plot.
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are distributed normally?

The histogram and the normal probability plot are used to check whether or not it is reasonable to
assume that the random errors inherent in the process have been drawn from a normal
distribution. The normality assumption is needed for the error rates we are willing to accept when
making decisions about the process. If the random errors are not from a normal distribution,
incorrect decisions will be made more or less frequently than the stated confidence levels for our
inferences indicate.

The normal probability plot is constructed by plotting the sorted values of the residuals versus the
associated theoretical values from the standard normal distribution. Unlike most residual scatter
plots, however, arandom scatter of points does not indicate that the assumption being checked is
met in this case. Instead, if the random errors are normally distributed, the plotted points will lie
close to straight line. Distinct curvature or other signficant deviations from a straight line indicate
that the random errors are probably not normally distributed. A few pointsthat are far off the line
suggest that the data has some outliersin it.

Normal probability plots for the Pressure/ Temperature example, the Thermocouple Calibration
example, and the Polymer Relaxation example are shown below. The normal probability plots for

these three examples indicate that that it is reasonable to assume that the random errors for these
processes are drawn from approximately normal distributions. In each case there is a strong linear
relationship between the residuals and the theoretical values from the standard normal
distribution. Of course the plots do show that the relationship is not perfectly deterministic (and it
never will be), but the linear relationship is still clear. Since none of the pointsin these plots
deviate much from the linear relationship defined by the residuals, it is also reasonable to
conclude that there are no outliersin any of these data sets.
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If the random errors from one of these processes were not normally distributed, then significant
curvature may have been visible in the relationship between the residuals and the quantiles from
the standard normal distribution, or there would be residuals at the upper and/or lower ends of the
line that clearly did not fit the linear relationship followed by the bulk of the data. Examples of
some typical cases obtained with non-normal random errors are illustrated in the general

discussion of the normal probability plot.

The normal probability plot helps us determine whether or not it is reasonable to assume that the
random errorsin a statistical process can be assumed to be drawn from anormal distribution. An
advantage of the normal probability plot isthat the human eye is very sensitive to deviations from
astraight line that might indicate that the errors come from a non-normal distribution. However,
when the normal probability plot suggests that the normality assumption may not be reasonable, it
does not give us avery good idea what the distribution does look like. A histogram of the
residuals from the fit, on the other hand, can provide a clearer picture of the shape of the
distribution. The fact that the histogram provides more general distributional information than
does the normal probability plot suggests that it will be harder to discern deviations from
normality than with the more specifically-oriented normal probability plot.

Histograms for the three examples used to illustrate the normal probability plot are shown below.
The histograms are all more-or-less bell-shaped, confirming the conclusions from the normal
probability plots. Additional examples can be found in the gallery of graphical techniques.
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I mportant One important detail to note about the normal probability plot and the histogram is that they
Note provide information on the distribution of the random errors from the process only if

1. thefunctional part of the model is correctly specified,

2. the standard deviation is constant across the data,

3. thereisno drift in the process, and

4. the random errors are independent from one run to the next.

If the other residual plots indicate problems with the model, the normal probability plot and
histogram will not be easily interpretable.
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Satistical Although the residual plots discussed on pages 4.4.4.1 and 4.4.4.3 will

Tests Can often indicate whether any important variables are missing or

Augment misspecified in the functional part of the model, a statistical test of the
Ambiguous hypothesis that the model is sufficient may be helpful if the plots leave

Residual Plots  any doubt. Although it may seem tempting to use this type of
statistical test in place of residual plots since it apparently assesses the
fit of the model objectively, no single test can provide the rich
feedback to the user that a graphical analysis of the residuals can
provide. Furthermore, while model completenessis one of the most
important aspects of model adequacy, this type of test does not address
other important aspects of model quality. In statistical jargon, thistype
of test for model adequacy is usually called a"lack-of-fit" test.

General The most common strategy used to test for model adequacy isto

Srategy compare the amount of random variation in the residuals from the data
used to fit the model with an estimate of the random variation in the
process using data that are independent of the model. If these two
estimates of the random variation are similar, that indicates that no
significant terms are likely to be missing from the model. If the
model -dependent estimate of the random variation islarger than the
model -independent estimate, then significant terms probably are
missing or misspecified in the functional part of the model.
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The need for a model-independent estimate of the random variation
means that replicate measurements made under identical experimental
conditions are required to carry out a lack-of-fit test. If no replicate
measurements are available, then there will not be any baseline
estimate of the random process variation to compare with the results
from the model. Thisisthe main reason that the use of replication is
emphasized in experimental design.

Although it might seem like two sets of data would be needed to carry
out the lack-of-fit test using the strategy described above, one set of
datato fit the model and compute the residual standard deviation and
the other to compute the model-independent estimate of the random
variation, that is usually not necessary. In most regression
applications, the same data used to fit the model can also be used to
carry out the lack-of-fit test, aslong as the necessary replicate
measurements are available. In these cases, the lack-of-fit statistic is
computed by partitioning the residual standard deviation into two
independent estimators of the random variation in the process. One
estimator depends on the model and the sample means of the

replicated sets of data (ffT m), while the other estimator is a pooled
standard deviation based on the variation observed in each set of

replicated measurements (f-':T r). The squares of these two estimators of
the random variation are often called the "mean square for |ack-of-fit"
and the "mean square for pure error," respectively, in statistics texts.

The notation @ and T is used here instead to emphasize the fact
that, if the model fits the data, these quantities should both be good
estimators of 7.

The model-independent estimator of & is computed using the formula

'ﬁ-:-': —n, ZZ yz; z

R 1=1 7=1

with 7z denoting the sample size of the data set used to fit the model,
7Ly isthe number of unique combinations of predictor variable levels,
T is the number of replicated observations at the ith combination of
predictor variable levels, the y; ; are the regression responses indexed
by their predictor variable levels and number of replicate
measurements, and 3; T isthe mean of the responses at the itth

combination of predictor variable levels. Notice that the formulafor
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a, depends only on the data and not on the functional part of the

model. This shows that &+ will be a good estimator of &, regardless of
whether the model is a compl ete description of the process or not.

Unlike the formulafor o r, the formulafor a M

Om = | ™ Z n; |0 — f(3 3))°

(mu —p) i

(with 3 denoting the number of unknown parametersin the model)

does depend on the functional part of the model. If the model were
correct, the value of the function would be a good estimate of the

mean value of the response for every combination of predictor variable
values. When the function provides good estimates of the mean

response at the ith combination, then @+ should be close in value to 7
and should also be a good estimate of . If, on the other hand, the
function is missing any important terms (within the range of the data),
or if any terms are misspecified, then the function will provide a poor
estimate of the mean response for some combinations of the predictors

and m will tend to be greater than ;.

Combining the ideas presented in the previous two paragraphs,
following the general strategy outlined above, the adequacy of the

functional part of the model can be assessed by comparing the values

of Tm and O 1f O = O r, then one or more important terms may be
missing or misspecified in the functional part of the model. Because of

the random error in the data, however, we know that o n Will

sometimes be larger than &+ even when the model is adequate. To
make sure that the hypothesis that the model is adequate is not rejected

by chance, it is necessary to understand how much greater than &+ the
vaue of @ might typically be when the model does fit the data. Then
the hypothesis can be rejected only when @ is significantly greater
than 'ﬁrr.
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When the model doesfit the data, it turns out that the ratio

follows an F distribution. Knowing the probability distribution that

describes the behavior of the statistic, L, we can control the
probability of rejecting the hypothesis that the model is adequatein
cases when the model actually is adequate. Rejecting the hypothesis
that the mode! is adequate only when L is greater than an upper-tail
cut-off value from the F distribution with a user-specified probability
of wrongly rejecting the hypothesis gives us a precise, objective,
probabilistic definition of when @in is significantly greater than &+,
The user-specified probability used to obtain the cut-off value from the
F distribution is called the "significance level" of thetest. The
significance level for most statistical tests is denoted by . The most
commonly used value for the significance level isce = (.05, which
means that the hypothesis of an adequate model will only be rejected
in 5% of tests for which the model really is adequate. Cut-off values
can be computed using most statistical software or from tables of the F

distribution. In addition to needing the significance level to obtain the
cut-off value, the F distribution is indexed by the degrees of freedom

associated with each of the two estimators of . @, which appearsin

the numerator of L, has i3, — p degrees of freedom. 7, which
appears in the denominator of L, has 13 — 12, degrees of freedom.

Although the formula given above more clearly shows the nature of

@m, the numerically equivalent formula below iseasier to usein
computations
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functional part of the model are necessary?

Models that are generally correct in form, but that include extra, unnecessary terms are said to
"over-fit" the data. The term over-fitting is used to describe this problem because the extraterms
in the model make it more flexible than it should be, alowing it to fit some of the random
variation in the data as if it were deterministic structure. Because the parameters for any
unnecessary terms in the model usually have estimated values near zero, it may seem as though
leaving them in the model would not hurt anything. It is true, actually, that having one or two
extratermsin the model does not usually have much negative impact. However, if enough extra
terms are |eft in the model, the consequences can be serious. Among other things, including
unnecessary termsin the model can cause the uncertainties estimated from the data to be larger
than necessary, potentially impacting scientific or engineering conclusions to be drawn from the
analysis of the data.

Over-fitting is especialy likely to occur when developing purely empirical models for processes
when there is no external understanding of how much of the total variation in the data might be
systematic and how much is random. It aso happens more frequently when using regression
methods that fit the datalocally instead of using an explicitly specified function to describe the
structure in the data. Explicit functions are usually relatively simple and have few terms. It is
usually difficult to know how to specify an explicit function that fits the noise in the data, since
noise will not typically display much structure. Thisis why over-fitting is not usually a problem
with these types of models. Local models, on the other hand, can easily be made to fit very
complex patterns, alowing them to find apparent structure in process noise if careis not
exercised.

Just as statistical tests can be used to check for significant missing or misspecified termsin the
functional part of amodel, they can also be used to determine if any unnecessary terms have
been included. In fact, checking for over-fitting of the datais one areain which statistical tests
are more effective than residual plots. To test for over-fitting, however, individual tests of the
importance of each parameter in the model are used rather than following using asingle test as
done when testing for terms that are missing or misspecified in the model.

Most output from regression software also includesindividual statistical tests that compare the
hypothesis that each parameter is equal to zero with the alternative that it is not zero. These tests
are convenient because they are automatically included in most computer output, do not require
replicate measurements, and give specific information about each parameter in the model.
However, if the different predictor variables included in the model have values that are
correlated, these tests can aso be quite difficult to interpret. Thisis because these tests are
actually testing whether or not each parameter is zero given that all of the other predictorsare
included in the modd.

http://www.itl. nist.gov/div898/handbook/pmd/section4/pmd447.htm (1 of 3) [11/14/2003 5:50:39 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

4.4.4.7. How can | test whether all of the terms in the functional part of the model are necessary?

Test The test statistics for testing whether or not each parameter is zero are typically based on
Satistics Student's t distribution. Each parameter estimate in the model is measured in terms of how many
Based on standard deviationsit is from its hypothesized value of zero. If the parameter's estimated value is
Sudent'st close enough to the hypothesized value that any deviation can be attributed to random error, the

Distribution  hypothesis that the parameter's true value is zero is not rejected. If, on the other hand, the
parameter's estimated value is so far away from the hypothesized value that the deviation cannot
be plausibly explained by random error, the hypothesis that the true value of the parameter is
zero isrejected.

Because the hypothesized value of each parameter is zero, the test statistic for each of these tests
issimply the estimated parameter value divided by its estimated standard deviation,

(3—0) &
A

T

5,

which provides a measure of the distance between the estimated and hypothesized values of the
parameter in standard deviations. Based on the assumptions that the random errors are normally
distributed and the true value of the parameter is zero (as we have hypothesized), the test statistic
has a Student's t distribution with 71 — P degrees of freedom. Therefore, cut-off valuesfor the t
distribution can be used to determine how extreme the test statistic must be in order for each
parameter estimate to be too far away from its hypothesized value for the deviation to be
attributed to random error. Because these tests are generally used to simultaneously test whether
or not a parameter value is greater than or less than zero, the tests should each be used with
cut-off values with a significance level of o {‘ 2. Thiswill guarantee that the hypothesis that each
parameter equals zero will be rejected by chance with probability ¢x. Because of the symmetry of
the t distribution, only one cut-off value, the upper or the lower one, needs to be determined, and
the other will be it's negative. Equivalently, many people simply compare the absolute value of
the test statistic to the upper cut-off value.

Parameter To illustrate the use of the individual tests of the significance of each parameter in amodel, the
Testsfor the  Dataplot output for the Pressure/Temperature example is shown below. In this case a

Pressure / straight-line model was fit to the data, so the output includes tests of the significance of the
Temperature  intercept and slope. The estimates of the intercept and the slope are 7.75 and 3.93, respectively.
Example Their estimated standard deviations are listed in the next column followed by the test statistics to

determine whether or not each parameter is zero. At the bottom of the output the estimate of the
residual standard deviation, &, and its degrees of freedom are aso listed.
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Dataplot
Outpuit: LEAST SQUARES PCLYNOM AL FI'T
Pressure/ SAMPLE SI ZE N = 40
Temperature DECGREE = 1
Example NO REPLI CATI ON CASE
PARAMETER ESTI MATES (APPROX. ST. DEV.) T VALUE
1 A0 7. 74899 ( 2.354 ) 3.292
2 Al 3.93014 (0. 5070E-01) 77.51
RESI DUAL STANDARD DEVI ATI ON = 4.299098
RESI DUAL DEGREES OF FREEDOM = 38

L ooking up the cut-off value from the tables of thet distribution using a significance level of

ov = (.05 and 38 degrees of freedom yields a cut-off value of 2.024 (the cut-off is obtained
from the column labeled "0.025" since thisis atwo-sided test and 0.05/2 = 0.025). Since both of
the test statistics are larger in absolute value than the cut-off value of 2.024, the appropriate
conclusion is that both the slope and intercept are significantly different from zero at the 95%
confidence level.
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4.4.5. If my current model does not fit the data well, how can | improve it?

P ENGINEERING STATISTICS HANDBOOK

|[HOME

TOOLS & AIDS |[SEARCH [BACK NEXT]|

4. Process Modeling

4.4, Data Analysisfor Process Modeling

4.4.5.1f my current model does not fit the
data well, how can | improve it?

What Next?

Methods for
Model
| mprovement

NIST
SEMATECH

Validating amodel using residual plots, formal hypothesis tests and
descriptive statistics would be quite frustrating if discovery of a
problem meant restarting the modeling process back at square one.
Fortunately, however, there are also techniques and tools to remedy
many of the problems uncovered using residual analysis. In some cases
the model validation methods themsel ves suggest appropriate changes
to amode at the same time problems are uncovered. Thisis especially
true of the graphical tools for model validation, though tests on the
parameters in the regression function also offer insight into model
refinement. Treatments for the various model deficiencies that were
diagnosed in Section 4.4.4. are demonstrated and discussed in the

subsections listed below.

1. Updating the Function Based on Residual Plots
2. Accounting for Non-Constant Variation Across the Data

3. Accounting for Errors with a Non-Normal Distribution
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4.4.5.1. Updating the Function Based on Residual Plots
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4. Process Modeling
4.4, Data Analysis for Process Modeling
4.45. If my current model does not fit the data well, how can | improve it?

4.4.5.1.Updating the Function Based on Residual Plots

Residual If the plots of the residuals used to check the adequacy of the functional part of the model indicate
Plots Guide problems, the structure exhibited in the plots can often be used to determine how to improve the
Mo_del functional part of the model. For example, suppose the initial model fit to the thermocouple
Refinement calibration data was a quadratic polynomial. The scatter plot of the residuals versus temperature

showed that there was structure | eft in the data when this model was used.

Residuals vs
Temperature:
Quadratic

Model 4

Re=lduals from Quadratic Model
o
|

| ' | ' | ' | ' | ' |
100 200 300 400 500 600
Tempemture

The shape of the residual plot, which looks like a cubic polynomial, suggests that adding another
term to the polynomia might account for the structure left in the data by the quadratic model.
After fitting the cubic polynomial, the magnitude of the residuals is reduced by afactor of about
30, indicating a big improvement in the model.
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4.4.5.1. Updating the Function Based on Residual Plots

Residuals vs
Temperature:
Cubic Model

Increasing
Residual
Complexity
uggests
LOESS
Model

NIST
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Although the model isimproved, thereis still structure in the residuals. Based on this structure, a
higher-degree polynomial looks like it would fit the data. Polynomia models become numerically
unstable as their degree increases, however. Therfore, after afew iterations like this, leading to
polynomials of ever-increasing degree, the structure in the residualsisindicating that a
polynomial does not actually describe the data very well. As aresult, a different type of model,
such as a nonlinear model or a LOESS model, is probably more appropriate for these data. The
type of model needed to describe the data, however, can be arrived at systematically using the
structure in the residuals at each step.
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4.4. Data Analysis for Process Modeling

4.45. If my current model does not fit the datawell, how can | improveit?

4.4.5.2. Accounting for Non-Constant Variation Across the

Data
Two Basic
Approaches:
Transformation and
Weighting
Using

Transformations

Typical

Transfor mations for
Stabilization of
Variation

There are two basic approaches to obtaining improved parameter estimators for datain which the
standard deviation of the error is not constant across all combinations of predictor variable values:

1. transforming the data so it meets the standard assumptions, and

2. using weights in the parameter estimation to account for the unequal standard deviations.

Both methods work well in awide range of situations. The choice of which to use often hinges on
personal preference because in many engineering and industrial applications the two methods
often provide practically the same results. In fact, in most experiments there is usually not enough
data to determine which of the two models works better. Sometimes, however, when thereis
scientific information about the nature of the model, one method or the other may be preferred
because it is more consistent with an existing theory. In other cases, the data may make one of the
methods more convenient to use than the other.

The basic steps for using transformations to handle data with unequal subpopulation standard
deviations are:

1. Transform the response variable to equalize the variation across the levels of the predictor
variables.

2. Transform the predictor variables, if necessary, to attain or restore a simple functional form
for the regression function.

3. Fit and validate the model in the transformed variables.

4. Transform the predicted values back into the original units using the inverse of the
transformation applied to the response variable.

Appropriate transformations to stabilize the variability may be suggested by scientific knowledge
or selected using the data. Three transformations that are often effective for equalizing the
standard deviations across the values of the predictor variables are:

1 ‘/E,

2. 1 (“y) (note: the base of the logarithm does not really matter), and

3.

=

o

Other transformations can be considered, of course, but in a surprisingly wide range of problems
one of these three transformations will work well. As aresult, these are good transformations to
start with, before moving on to more specialized transformations.
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4.4.5.2. Accounting for Non-Constant Variation Across the Data

Modified Pressure /
Temperature Example

Residuals from
Modified Pressure
Data

Sabilizing the
Variation

Transfor mations of
the Pressure

To illustrate how to use transformations to stabilize the variation in the data, we will return to the
modified version of the Pressure/Temperature example. The residuals from a straight-line fit to
that data clearly showed that the standard deviation of the measurements was not constant across
the range of temperatures.
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Thefirst step in the processis to compare different transformations of the response variable,
pressure, to see which one, if any, stabilizes the variation across the range of temperatures. The
straight-line relationship will not hold for all of the transformations, but at this stage of the
process that is not a concern. The functional relationship can usually be corrected after stabilizing
the variation. The key for this step isto find a transformation that makes the uncertainty in the
data approximately the same at the lowest and highest temperatures (and in between). The plot
below shows the modified Pressure/Temperature datain its origina units, and with the response
variable transformed using each of the three typical transformations. Remember you can click on
the plot to see alarger view for easier comparison.
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Inverse PressureHas  After comparing the effects of the different transformations, it looks like using the inverse of the

Constant Variation pressure will make the standard deviation approximately constant across all temperatures.
However, it is somewhat difficult to tell how the standard deviations really compare on a plot of
thissize and scale. To better see the variation, afull-sized plot of temperature versus the inverse
of the pressure is shown below. In that plot it is easier to compare the variation across
temperatures. For example, comparing the variation in the pressure values at a temperature of
about 25 with the variation in the pressure values at temperatures near 45 and 70, this plot shows
about the same level of variation at all three temperatures. It will still be critical to look at
residual plots after fitting the model to the transformed variables, however, to really see whether
or not the transformation we've chosen is effective. The residual scaleisrealy the only scale that
can reveal that level of detail.

Enlarged View of
Temperature Versus
1U/Pressure
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Transforming
Temperature to
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Transformations of
the Temperature
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Having found a transformation that appears to stabilize the standard deviations of the
measurements, the next step in the process is to find a transformation of the temperature that will
restore the straight-line relationship, or some other simple relationship, between the temperature
and pressure. The same three basic transformations that can often be used to stabilize the
variation are also usually able to transform the predictor to restore the original relationship
between the variables. Plots of the temperature and the three transformations of the temperature
versus the inverse of the pressure are shown below.
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Comparing the plots of the various transformations of the temperature versus the inverse of the
pressure, it appears that the straight-line relationship between the variablesis restored when the
inverse of the temperature is used. This makes intuitive sense because if the temperature and
pressure are related by a straight line, then the same transformation applied to both variables
should change them both similarly, retaining their original relationship. Now, after fitting a
straight line to the transformed data, the residuals plotted versus both the transformed and original
values of temperature indicate that the straight-line model fits the data and that the random
variation no longer increases with increasing temperature. Additional diagnostic plots of the

residuals confirm that the mode fits the data well.

Residuals Fromthe
Fit to the
Transformed Data
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4.4.5.2. Accounting for Non-Constant Variation Across the Data

Using Weighted Least ~ Asdiscussed in the overview of different methods for building process models, the goal when

Squares using weighted least squares regression isto ensure that each data point has an appropriate level
of influence on the final parameter estimates. Using the weighted least squaresfitting criterion,

the parameter estimates are obtained by minimizing

Q= g wily; — f(f!'?-é)]z

Optimal results, which minimize the uncertainty in the parameter estimators, are obtained when
the weights, 141, used to estimate the values of the unknown parameters are inversely proportional

to the variances at each combination of predictor variable values:
1
wy ol —
(] D_!_z

Unfortunately, however, these optimal weights, which are based on the true variances of each
data point, are never known. Estimated weights have to be used instead. When estimated weights
are used, the optimality properties associated with known weights no longer strictly apply.
However, if the weights can be estimated with high enough precision, their use can significantly
improve the parameter estimates compared to the results that would be obtained if al of the data
points were equally weighted.

Direct Estimation of If there are replicates in the data, the most obvious way to estimate the weightsis to set the
Weights weight for each data point equal to the reciprocal of the sample variance obtained from the set of
replicate measurements to which the data point belongs. Mathematically, this would be

.:',‘.ri-2 - [Z:-ill[yij—ii:'z]

?1;'—1

1 1
W = —=

where
o w;;ae the weights indexed by their predictor variable levels and replicate measurements,

« 1 indexes the unique combinations of predictor variable values,
©j indexes the replicates within each combination of predictor variable values,

3. is the sample standard deviation of the response variable at the ith combination of
predictor variable values,

« Tiiisthe number of replicate observations at the ith combination of predictor variable
values,

o Y are the individual data pointsindexed by their predictor variable levels and replicate
measurements,

. T is the mean of the responses at the ith combination of predictor variable levels.
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A Better Strategy for
Estimating the
Weights

Estimating Weights
Without Replicates

Unfortunately, although this method is attractive, it rarely works well. Thisis because when the
weights are estimated this way, they are usually extremely variable. As aresult, the estimated
weights do not correctly control how much each data point should influence the parameter
estimates. This method can work, but it requires a very large number of replicates at each
combination of predictor variables. In fact, if this method is used with too few replicate
measurements, the parameter estimates can actually be more variable than they would have been
if the unequal variation were ignored.

A better strategy for estimating the weightsisto find a function that relates the standard deviation
of the response at each combination of predictor variable values to the predictor variables
themselves. This means that if

(denoting the unknown parameters in the function g by +7), then the weights can be set to

1

=

w;; =
T g(E;

!

)

This approach to estimating the weights usually provides more precise estimates than direct
estimation because fewer quantities have to be estimated and there is more data to estimate each
one.

-

If there are only very few or no replicate measurements for each combination of predictor
variable values, then approximate replicate groups can be formed so that weights can be
estimated. There are several possible approaches to forming the replicate groups.

1. One method isto manually form the groups based on plots of the response against the
predictor variables. Although this allows alot of flexibility to account for the features of a
specific data set, it often impractical. However, this approach may be useful for relatively
small data sets in which the spacing of the predictor variable valuesis very uneven.

2. Another approach isto divide the data into equal-sized groups of observations after sorting
by the values of the response variable. It isimportant when using this approach not to make
the size of the replicate groups too large. If the groups are too large, the standard deviations
of the response in each group will be inflated because the approximate replicates will differ
from each other too much because of the deterministic variation in the data. Again, plots of
the response variable versus the predictor variables can be used as a check to confirm that
the approximate sets of replicate measurements |ook reasonable.

3. A third approach is to choose the replicate groups based on ranges of predictor variable
values. That is, instead of picking groups of afixed size, the ranges of the predictor
variables are divided into equal size increments or bins and the responses in each bin are
treated as replicates. Because the sizes of the groups may vary, there is atradeoff in this
case between defining the intervals for approximate replicates to be too narrow or too wide.
As aways, plots of the response variable against the predictor variables can serve as a
guide.

Although the exact estimates of the weights will be somewhat dependent on the approach used to
define the replicate groups, the resulting weighted fit is typically not particularly sensitive to
small changes in the definition of the weights when the weights are based on a simple, smooth
function.
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Power Function
Model for the Weights

Fitting the Model for
Estimation of the
Weights

Validating the Model
for Estimation of the
Weights

Using Weighted
Residuals to Validate
WLS Models

One particular function that often works well for modeling the variancesis a power of the mean
at each combination of predictor variable values,
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Iterative procedures for simultaneoudly fitting a weighted least squares model to the original data
and a power function model for the weights are discussed in Carroll and Ruppert (1988), and

Ryan (1997).

When fitting the model for the estimation of the weights,

- I — — f — —"
I AF A e S 4
a: glr;y) +glr; v)e

it isimportant to note that the usual regression assumptions do not hold. In particular, the

variation of the random errorsis not constant across the different sets of replicates and their
distribution is not normal. However, this can be often be accounted for by using transformations
(the In transformation often stabilizes the variation), as described above.

Of course, it isaways agood ideato check the assumptions of the analysis, asin any
model-building effort, to make sure the model of the weights seems to fit the weight data
reasonably well. The fit of the weights model often does not need to meet all of the usual
standards to be effective, however.

Once the weights have been estimated and the model has been fit to the original data using
weighted least squares, the validation of the model follows as usual, with one exception. In a
weighted analysis, the distribution of the residuals can vary substantially with the different values
of the predictor variables. This necessitates the use of weighted residuals [Graybill and lyer
(1994)] when carrying out a graphical residua analysis so that the plots can be interpreted as
usual. The weighted residuals are given by the formula

il

Ei; = M[yij - f[fn :]]

It isimportant to note that most statistical software packages do not compute and return weighted
residuals when aweighted fit is done, so the residuals will usualy have to be weighted manually
in an additional step. If after computing a weighted least squares fit using carefully estimated
weights, the residual plots still show the same funnel-shaped pattern as they did for theinitial
equally-weighted fit, it islikely that you may have forgotten to compute or plot the weighted
residuals.
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Example of WLS
Using the Power
Function Model

Modified
Pressure/Temperature
Data

Defining Sets of
Approximate
Replicate
Measurements

The power function model for the weights, mentioned above, is often especially convenient when

there is only one predictor variable. In this situation the general model given above can usually be
simplified to the power function

]

[ e '"Ii.'-'.‘,-

which does not require the use of iterative fitting methods. This model will be used with the
modified version of the Pressure/Temperature data, plotted below, to illustrate the steps needed to

carry out aweighted |least squares fit.

300

I ' I ' [ ' I ' I ' [
20 30 40 50 60 T0
Temperature

From the data, plotted above, it is clear that there are not many true replicates in this data set. As
aresult, sets of approximate replicate measurements need to be defined in order to use the power
function model to estimate the weights. In this case, this was done by rounding a multiple of the

temperature to the nearest degree and then converting the rounded data back to the original scale.

Temperaturepe, = 3 * round(Temperature/3)

Thisis an easy way to identify sets of measurements that have temperatures that are relatively
close together. If this process had produced too few sets of replicates, a smaller factor than three
could have been used to spread the data out further before rounding. If fewer replicate sets were
needed, then alarger factor could have been used. The appropriate value to use is a matter of
judgment. Anideal value is one that doesn't combine values that are too different and that yields
sets of replicates that aren't too different in size. A table showing the original data, the rounded
temperatures that define the approximate replicates, and the replicate standard deviationsis listed
below.
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4.4.5.2. Accounting for Non-Constant Variation Across the Data

Data with

Approximate Rounded St andard

Replicates Tenperature Tenperature Pressure Deviation
21. 602 21 91. 423 0. 192333
21. 448 21 91. 695 0. 192333
23.323 24 98. 883 1.102380
22.971 24 97. 324 1.102380
25. 854 27 107. 620 0. 852080
25. 609 27 108. 112 0. 852080
25. 838 27 109. 279 0. 852080
29. 242 30 119. 933 11. 046422
31. 489 30 135. 555 11. 046422
34.101 33 139. 684 0. 454670
33.901 33 139. 041 0. 454670
37.481 36 150. 165 0. 031820
35. 451 36 150. 210 0. 031820
39. 506 39 164. 155 2.884289
40. 285 39 168. 234 2.884289
43. 004 42 180. 802 4.845772
41. 449 42 172. 646 4.845772
42.989 42 169. 884 4.845772
41. 976 42 171. 617 4.845772
44. 692 45 180. 564 NA
48. 599 48 191. 243 5. 985219
47.901 48 199. 386 5. 985219
49. 127 48 202. 913 5. 985219
49. 542 51 196. 225 9. 074554
51.144 51 207. 458 9. 074554
50. 995 51 205. 375 9. 074554
50. 917 51 218. 322 9. 074554
54.749 54 225. 607 2.040637
53. 226 54 223. 994 2.040637
54. 467 54 229. 040 2. 040637
55. 350 54 227.416 2. 040637
54.673 54 223. 958 2. 040637
54. 936 54 224.790 2. 040637
57.549 57 230. 715 10. 098899
56. 982 57 216. 433 10. 098899
58. 775 60 224. 124 23.120270
61. 204 60 256. 821 23.120270
68. 297 69 276.594 6.721043
68. 476 69 267. 296 6.721043
68. 774 69 280. 352 6.721043
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4.4.5.2. Accounting for Non-Constant Variation Across the Data

Transformation of the
Weight Data

Transformed Data for
Weight Estimation
with Fitted Model

Soecification of
Weight Function

With the replicate groups defined, a plot of the In of the replicate variances versus the In of the
temperature shows the transformed data for estimating the weights does appear to follow the
power function model. Thisis because the In-In transformation linearizes the power function, as
well as stabilizing the variation of the random errors and making their distribution approximately
normal.

In(67) = In(nzl)
= In(m)+721n(z;)

. .
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The Splus output from the fit of the weight estimation model! is shown below. Based on the output
and the associated residua plots, the model of the weights seems reasonable, and

w;: = Temperature™ '

i
-6
7= Temperature

should be an appropriate weight function for the modified Pressure/Temperature data. The weight
function is based only on the slope from the fit to the transformed weight data because the
weights only need to be proportional to the replicate variances. As aresult, we can ignore the
estimate of Y1 in the power function since it is only a proportionality constant (in original units of
the model). The exponent on the temperature in the weight function is usually rounded to the
nearest digit or single decimal place for convenience, since that small change in the weight
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4.4.5.2. Accounting for Non-Constant Variation Across the Data

Output from Weight
Estimation Fit

Fit of the WLS Model
to the Pressure/
Temperature Data

Weighted Residuals
from WLSFit of
Pressure/
Temperature Data

function will not affect the results of the final fit significantly.

Resi dual Standard Error = 3.0245
Mul tiple R Square = 0.3642

N = 14,

F-statistic = 6.8744 on 1 and 12 df, p-value = 0.0223
coef std.err t.stat p.value

-20.5896 8.4994 -2.4225 0.0322
6.0230 2.2972 2.6219 0.0223

I nt er cept
| n( Tenper at ure)

With the weight function estimated, the fit of the model with weighted least squares produces the
residual plot below. This plot, which shows the weighted residuals from the fit versus
temperature, indicates that use of the estimated weight function has stabilized the increasing
variation in pressure observed with increasing temperature. The plot of the datawith the
estimated regression function and additional residual plots using the weighted residuals confirm
that the model fits the data well.

10%-4 151004

51005

Waighled Rasidualks
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4.4.5.2. Accounting for Non-Constant Variation Across the Data

Comparison of Having modeled the data using both transformed variables and weighted |east squares to account
Transformed and for the non-constant standard deviations observed in pressure, it is interesting to compare the two
Weighted Results resulting models. Logically, at least one of these two models cannot be correct (actually, probably

neither one is exactly correct). With the random error inherent in the data, however, thereisno
way to tell which of the two models actually describes the relationship between pressure and
temperature better. The fact that the two models lie right on top of one another over amost the
entire range of the datatells usthat. Even at the highest temperatures, where the models diverge
dlightly, both models match the small amount of data that is available reasonably well. The only
way to differentiate between these modelsisto use additional scientific knowledge or collect alot
more data. The good news, though, is that the models should work equally well for predictions or
calibrations based on these data, or for basic understanding of the relationship between
temperature and pressure.
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4.4.5.3. Accounting for Errors with a Non-Normal Distribution
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4.4. Data Analysis for Process Modeling

4.45. If my current model does not fit the datawell, how can | improveit?

4.4.5.3.Accounting for Errors with a Non-Normal
Distribution

Basic Approach:
Transformation

Using
Transformations

Unlike when correcting for non-constant variation in the random errors, thereisreally only one
basic approach to handling data with non-normal random errors for most regression methods.
This is because most methods rely on the assumption of normality and the use of linear estimation
methods (like least squares) to make probabilistic inferences to answer scientific or engineering
guestions. For methods that rely on normality of the data, direct manipulation of the datato make
the random errors approximately normal is usually the best way to try to bring the datain line
with this assumption. The main alternative to transformation is to use afitting criterion that
directly takes the distribution of the random errors into account when estimating the unknown
parameters. Using these types of fitting criteria, such as maximum likelihood, can provide very
good results. However, they are often much harder to use than the general fitting criteria used in
most process modeling methods.

The basic steps for using transformations to handle data with non-normally distributed random
errors are essentially the same as those used to handle non-constant variation of the random
errors.

1. Transform the response variable to make the distribution of the random errors
approximately normal.

2. Transform the predictor variables, if necessary, to attain or restore a simple functional form
for the regression function.

3. Fit and validate the modd in the transformed variables.

4. Transform the predicted values back into the original units using the inverse of the
transformation applied to the response variable.

The main difference between using transformations to account for non-constant variation and
non-normality of the random errorsisthat it is harder to directly see the effect of atransformation
on the distribution of the random errors. It is very often the case, however, that non-normality and
non-constant standard deviation of the random errors go together, and that the same
transformation will correct both problems at once. In practice, therefore, if you choose a
transformation to fix any non-constant variation in the data, you will often also improve the
normality of the random errors. If the data appear to have non-normally distributed random
errors, but do have a constant standard deviation, you can always fit models to several sets of
transformed data and then check to see which transformation appears to produce the most
normally distributed residuals.
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4.4.5.3. Accounting for Errors with a Non-Normal Distribution

Typical

Transfor mations for
Meeting
Distributional
Assumptions

Example

Modified
Pressure/Temperature
Data with Uniform
Random Errors

Not surprisingly, three transformations that are often effective for making the distribution of the
random errors approximately normal are:

1 VIE’

2. 1 (y) (note: the base of the logarithm does not really matter), and

3 L
Y
These are the same transformations often used for stabilizing the variation in the data. Other
appropriate transformations to improve the distributional properties of the random errors may be
suggested by scientific knowledge or selected using the data. However, these three
transformations are good ones to start with since they work well in so many situations.

To illustrate how to use transformations to change the distribution of the random errors, we will
look at a modified version of the Pressure/Temperature example in which the errors are uniformly
distributed. Comparing the results obtained from fitting the data in their original units and under
different transformations will directly illustrate the effects of the transformations on the
distribution of the random errors.
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4.4.5.3. Accounting for Errors with a Non-Normal Distribution

Fit of Model to the
Untransformed Data

Residuals from
Sraight-Line Model
of Untransformed
Data with Uniform
Random Errors

Sl ection of
Appropriate
Transformations

A four-plot of the residuals obtained after fitting a straight-line model to the
Pressure/Temperature data with uniformly distributed random errorsis shown below. The
histogram and normal probability plot on the bottom row of the four-plot are the most useful plots
for assessing the distribution of the residuals. In this case the histogram suggests that the
distribution is more rectangular than bell-shaped, indicating the random errors anot likely to be
normally distributed. The curvature in the normal probability plot also suggests that the random
errors are not normally distributed. If the random errors were normally distributed the normal
probability plots should be afairly straight line. Of course it wouldn't be perfectly straight, but
smooth curvature or several points lying far from the line are fairly strong indicators of
non-normality.
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Going through a set of steps similar to those used to find transformations to stabilize the random
variation, different pairs of transformations of the response and predictor which have asimple
functional form and will potentially have more normally distributed residuals are chosen. In the
multiplots below, all of the possible combinations of basic transformations are applied to the
temperature and pressure to find the pairs which have ssmple functional forms. In this case, which
istypical, the the data with sgquare root-square root, In-In, and inverse-inverse tranformations all
appear to follow a straight-line model. The next step will be to fit lines to each of these sets of
data and then to compare the residual plots to see whether any have random errors which appear
to be normally distributed.
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4.4.5.3. Accounting for Errors with a Non-Normal Distribution

sgrt(Pressure) vs
Different
Tranformations of
Temperature

log(Pressure) vs
Different
Tranformations of
Temperature
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4.4.5.3. Accounting for Errors with a Non-Normal Distribution

1/Pressure vs
Different
Tranformations of
Temperature
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Fit of Model to The normal probability plots and histograms below show the results of fitting straight-line models

Transformed to the three sets of transformed data. The results from the fit of the model to the datain its

Variables original units are also shown for comparison. From the four normal probability plotsit looks like
the model fit using the In-In transformations produces the most normally distributed random
errors. Because the normal probability plot for the In-In datais so straight, it seems safe to
conclude that taking the In of the pressure makes the distribution of the random errors
approximately normal. The histograms seem to confirm this since the histogram of the In-In data
looks reasonably bell-shaped while the other histograms are not particularly bell-shaped.
Therefore, assuming the other residual plots also indicated that a straight line model fit this
transformed data, the use of In-In tranformations appears to be appropriate for analysis of this
data.

Residuals from the Fit
to the Transformed
Variables
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4.4.5.3. Accounting for Errors with a Non-Normal Distribution
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4.5. Use and Interpretation of Process Models
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4. Process Modeling

4.5.Use and Interpretation of Process
Models

Overview of  This section covers the interpretation and use of the models devel oped

Section 4.5 from the collection and analysis of data using the procedures discussed
In Section 4.3 and Section 4.4. Three of the main uses of such models,
estimation, prediction and calibration, are discussed in detail.
Optimization, another important use of this type of model, is primarily
discussed in Chapter 5: Process Improvement.

Contents of 1. What types of predictions can | make using the model ?

Section 4.5 1. How do | estimate the average response for a particular set
of predictor variable values?

2. How can | predict the value and and estimate the
uncertainty of a single response?

2. How can | use my process model for calibration?
1. Single-Use Cdlibration Intervals
3. How can | optimize my process using the process model ?
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4.5.1. What types of predictions can | make using the model?
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4. Process Modeling
4.5. Use and Interpretation of Process Models

4.5.1.What types of predictions can | make
using the model?

Detailed This section details some of the different types of predictions that can be
Information  made using the various process models whose devel opment is discussed
on in Section 4.1 through Section 4.4. Computational formulas or
Prediction agorithms are given for each different type of estimation or prediction,

along with simulation examples showing its probabilisitic interpretation.
An introduction to the different types of estimation and prediction can
be found in Section 4.1.3.1. A brief description of estimation and

prediction versus the other uses of process modelsis given in Section

4.1.3.

Different 1. How do | estimate the average response for a particular set of

Types of predictor variable values?

Predictions . : .

2. How can | predict the value and and estimate the uncertainty of a
single response?
NIST
HOME TOOLS & AIDS SEARCH BACK MNEXT

SEMATECH ! | | l |
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4.5.1.1. How do | estimate the average response for a particular set of predictor variable values?
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4. Process Modeling

4.5. Use and Interpretation of Process Models

4.5.1. What types of predictions can | make using the model ?

4.5.1.1.How do | estimate the average response for a

Sep 1: Plug
Predictors
Into
Estimated
Function

Pressure/
Temperature
Example

Polymer
Relaxation
Example

particular set of predictor variable values?

Once amodel that gives a good description of the process has been developed, it can be used for
estimation or prediction. To estimate the average response of the process, or, equivaently, the
value of the regression function, for any particular combination of predictor variable values, the
values of the predictor variables are simply substituted in the estimated regression function itself.
These estimated function values are often called "predicted values' or "fitted values'.

For example, in the Pressure/Temperature process, which iswell described by a straight-line
model relating pressure (Y) to temperature (), the estimated regression function is found to be

y=7.74800 4+ 3923014 x x

by substituting the estimated parameter valuesinto the functional part of the model. Then to

estimate the average pressure at a temperature of 65, the predictor value of interest is subsituted in
the estimated regression function, yielding an estimated pressure of 263.21.

y = T7.748994 3.93014 %65

= 263.21

This estimation process works analogously for nonlinear models, LOESS models, and all other
types of functional process models.

Based on the output from fitting the stretched exponential model in time (1) and temperature (
I'2), the estimated regression function for the polymer relaxation dataiis

; 7 : L1 1.16612
= 1.00721 + 3.01998 exp(—
Y et =P~ oesss 1 0.0087r, 1 001401zY))

Therefore, the estimated torque (¥) on a polymer sample after 60 minutes at atemperature of 40 is
5.26.
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Knowing that the estimated average pressure is 263.21 at a temperature of 65, or that the
estimated average torque on a polymer sample under particular conditions is 5.26, however, is not
enough information to make scientific or engineering decisions about the process. Thisis because
the pressure value of 263.21 is only an estimate of the average pressure at atemperature of 65.
Because of the random error in the data, there is also random error in the estimated regression
parameters, and in the values predicted using the model. To use the model correctly, therefore, the
uncertainty in the prediction must also be quantified. For example, if the safe operational pressure
of a particular type of gastank that will be used at atemperature of 65 is 300, different
engineering conclusions would be drawn from knowing the average actual pressure in thetank is
likely to lie somewherein therange 263 &= 52 versuslying intherange263.21 4= 0.52.

In order to provide the necessary information with which to make engineering or scientific
decisions, predictions from process models are usually given asintervals of plausible values that
have a probabilistic interpretation. In particular, intervals that specify arange of values that will
contain the value of the regression function with a pre-specified probability are often used. These
intervals are called confidence intervals. The probability with which the interval will capture the
true value of the regression function is called the confidence level, and is most often set by the
user to be 0.95, or 95% in percentage terms. Any value between 0% and 100% could be specified,
though it would almost never make sense to consider values outside a range of about 80% to 99%.
The higher the confidence level is set, the more likely the true value of the regression function is
to be contained in the interval. The trade-off for high confidence, however, iswideintervals. As
the sample size isincreased, however, the average width of the intervals typically decreases for
any fixed confidence level. The confidence level of an interval is usually denoted symbolically
using the notation 1 — ¢, with ¢ denoting a user-specified probability, called the significance
level, that the interval will not capture the true value of the regression function. The significance
level is most often set to be 5% so that the associated confidence level will be 95%.

Confidence intervals are computed using the estimated standard deviations of the estimated
regression function values and a coverage factor that controls the confidence level of the interval
and accounts for the variation in the estimate of the residual standard deviation.

The standard deviations of the predicted values of the estimated regression function depend on the
standard deviation of the random errorsin the data, the experimental design used to collect the
data and fit the model, and the values of the predictor variables used to obtain the predicted
values. These standard deviations are not simple quantities that can be read off of the output
summarizing the fit of the model, but they can often be obtained from the software used to fit the
model. Thisisthe best option, if available, because there are avariety of numerical issues that can
arise when the standard deviations are calculated directly using typical theoretical formulas.
Carefully written software should minimize the numerical problems encountered. If necessary,
however, matrix formulas that can be used to directly compute these values are given in texts such
as Neter, Wasserman, and Kutner.
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The coverage factor used to control the confidence level of the intervals depends on the
distributional assumption about the errors and the amount of information available to estimate the
residual standard deviation of the fit. For procedures that depend on the assumption that the
random errors have anormal distribution, the coverage factor istypically a cut-off value from the
Student's t distribution at the user's pre-specified confidence level and with the same number of
degrees of freedom as used to estimate the residual standard deviation in the fit of the model.
Tables of thet distribution (or functions in software) may be indexed by the confidence level (

1 — ) or the significance level (cx). It is also important to note that since these are two-sided
intervals, half of the probability denoted by the significance level is usually assigned to each side
of the interval, so the proper entry in at table or in a software function may also be labeled with
the value of o:f?, orl — ﬂ:fE, if the table or software is not exclusively designed for use with
two-sided tests.

The estimated values of the regression function, their standard deviations, and the coverage factor
are combined using the formula

Yt a0y

with ¥ denoti ng the estimated value of the regression function, i —a/2,- isthe coverage factor,

indexed by afunction of the significance level and by its degrees of freedom, and 7 f is the
standard deviation of ;. Some software may provide the total uncertainty for the confidence
interval given by the equation above, or may provide the lower and upper confidence bounds by
adding and subtracting the total uncertainty from the estimate of the average response. This can
save some computational effort when making predictions, if available. Since there are many types
of predictions that might be offered in a software package, however, it isagood ideato test the
software on an example for which confidence limits are already available to make sure that the
software is computing the expected type of intervals.

Computing confidence intervals for the average pressure in the Pressure/Temperature example,
for temperatures of 25, 45, and 65, and for the average torque on specimens from the polymer
relaxation example at different times and temperatures gives the results listed in the tables bel ow.
Note: the number of significant digits shown in the tables below is larger than would normally be
reported. However, as many significant digits as possible should be carried throughout all
calculations and results should only be rounded for final reporting. If reported numbers may be
used in further calculations, they should not be rounded even when finally reported. A useful rule
for rounding final results that will not be used for further computation isto round all of the

reported values to one or two significant digitsin the total uncertainty, tl—ﬂs’ 2.9 Thisisthe
convention for rounding that has been used in the tables below.

Lower 95% Upper 95%
. A Confidence Confidence

T Y T tl—ﬂflu t]—nl."lugf Bound Bound
25 106.0025 1.1976162 2.024394 2.424447 103.6 108.4
45 184.6053 0.6803245 2.024394 1.377245 183.2 186.0
65 263.2081 1.2441620 2.024394 2.518674 260.7 265.7
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Lower 95% Upper 95%
B A Confidence Confidence

T, Ty W 0 ti_afoe ti—a/2u0F Bound  Bound
20 25 5586307 0028402 2000298  0.056812 5,529 5.643
80 25 4998012 0012171 2000298  0.024346 4.974 5.022
20 50 6960607 0013711 2000298  0.027427 6.933 6.988
80 50 5342600 0010077 2000298  0.020158 5.322 5.363
20 75 7521252 0012054 2000298  0.024112 7.497 7.545
80 75 6220805 0013307 2000298  0.026618 6.194 6.248

As mentioned above, confidence intervals capture the true value of the regression function with a
user-specified probability, the confidence level, using the estimated regression function and the
associated estimate of the error. Simulation of many sets of data from a process model provides a
good way to obtain a detailed understanding of the probabilistic nature of these intervals. The
advantage of using simulation is that the true model parameters are known, which is never the
case for areal process. This allows direct comparison of how confidence intervals constructed
from alimited amount of data relate to the true values that are being estimated.

The plot below shows 95% confidence intervals computed using 50 independently generated data
sets that follow the same model as the data in the Pressure/Temperature example. Random errors
from anormal distribution with amean of zero and a known standard deviation are added to each
set of true temperatures and true pressures that lie on a perfect straight line to obtain the ssmulated
data. Then each data set is used to compute a confidence interval for the average pressure at a
temperature of 65. The dashed reference line marks the true value of the average pressure at a
temperature of 65.
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From the plot it is easy to see that not all of the intervals contain the true value of the average
pressure. Data sets 16, 26, and 39 all produced intervals that did not cover the true value of the
average pressure at atemperature of 65. Sometimes the interval may fail to cover the true value
because the estimated pressure is unusually high or low because of the random errorsin the data
set. In other cases, the variability in the data may be underestimated, leading to an interval that is
too short to cover the true value. However, for 47 out of 50, or approximately 95% of the data
sets, the confidence intervals did cover the true average pressure. When the number of data sets
was increased to 5000, confidence intervals computed for 4723, or 94.46%, of the data sets
covered the true average pressure. Finally, when the number of data sets was increased to 10000,
95.12% of the confidence intervals computed covered the true average pressure. Thus, the
simulation shows that although any particular confidence interval might not cover its associated
true value, in repeated experiments this method of constructing intervals produces intervals that
cover the true value at the rate specified by the user as the confidence level. Unfortunately, when
dealing with real processes with unknown parameters, it isimpossible to know whether or not a
particular confidence interval does contain the true value. It is nice to know that the error rate can
be controlled, however, and can be set so that it is far more likely than not that each interval
produced does contain the true value.

To summarize the interpretation of the probabilistic nature of confidence intervalsin words: in
independent, repeated experiments, 100{1 — ) % of theintervals will cover the true values,
given that the assumptions needed for the construction of the intervals hold.
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uncertainty of a single response?

In addition to estimating the average value of the response variable for a given combination of preditor
values, as discussed on the previous page, it is also possible to make predictions of the values of new
measurements or observations from a process. Unlike the true average response, a new measurement is
often actually observable in the future. However, there are a variety of different situationsin which a
prediction of a measurement value may be more desirable than actually making an observation from
the process.

For example, suppose that a concrete supplier needs to supply concrete of a specified measured
strength for a particular contract, but knows that strength varies systematically with the ambient
temperature when the concrete is poured. In order to be sure that the concrete will meet the
specification, prior to pouring, samples from the batch of raw materials can be mixed, poured, and
measured in advance, and the relationship between temperature and strength can be modeled. Then
predictions of the strength across the range of possible field temperatures can be used to ensure the
product islikely to meet the specification. Later, after the concrete is poured (and the temperature is
recorded), the accuracy of the prediction can be verified.

The mechanics of predicting a new measurement value associated with a combination of predictor
variable values are similar to the steps used in the estimation of the average response value. In fact, the
actual estimate of the new measured value is obtained by evaluating the estimated regression function
at the relevant predictor variable values, exactly asis done for the average response. The estimates are
the same for these two quantities because, assuming the model fits the data, the only difference
between the average response and a particular measured response is a random error. Because the error
is random, and has a mean of zero, there is no additional information in the model that can be used to
predict the particular response beyond the information that is available when predicting the average
response.

Aswhen estimating the average response, a probabilistic interval is used when predicting a new
measurement to provide the information needed to make engineering or scientific conclusions.
However, even though the estimates of the average response and particular response values are the
same, the uncertainties of the two estimates do differ. Thisis because the uncertainty of the measured
response must include both the uncertainty of the estimated average response and the uncertainty of
the new measurement that could conceptually be observed. This uncertainty must be included if the
interval that will be used to summarize the prediction result is to contain the new measurement with
the specified confidence. To help distinguish the two types of predictions, the probabilistic intervals
for estimation of a new measurement value are called prediction intervals rather than confidence
intervals.
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The estimate of the standard deviation of the predicted value, 7 P is obtained as described earlier.

Because the residual standard deviation describes the random variation in each individual

measurement or observation from the process, &, the estimate of the residual standard deviation
obtained when fitting the model to the data, is used to account for the extra uncertainty needed to
predict a measurement value. Since the new observation is independent of the data used to fit the
model, the estimates of the two standard deviations are then combined by "root-sum-of-squares’ or "in
guadrature”, according to standard formulas for computing variances, to obtain the standard deviation
of the prediction of the new measurement, Oy The formulafor 0, is

-

a

— A -
= ) o

?‘
.""H L

Because both + f and I"j-p are mathematically nothing more than different scalings of &, and coverage

factors from thet distribution only depend on the amount of data available for estimating , the
coverage factors are the same for confidence and prediction intervals. Combining the coverage factor
and the standard deviation of the prediction, the formulafor constructing prediction intervalsis given

by
yEt —u-,.'rZ.u&p_

As with the computation of confidence intervals, some software may provide the total uncertainty for
the prediction interval given the equation above, or may provide the lower and upper prediction
bounds. As suggested before, however, it is agood idea to test the software on an example for which
prediction limits are already available to make sure that the software is computing the expected type of
intervals.

Computing prediction intervals for the measured pressure in the Pressure/Temperature example, at
temperatures of 25, 45, and 65, and for the measured torque on specimens from the polymer relaxation
example at different times and temperatures, gives the results listed in the tables below. Note: the
number of significant digits shown is larger than would normally be reported. However, as many
significant digits as possible should be carried throughout all calculations and results should only be
rounded for final reporting. If reported numbers may be used in further calculations, then they should
not be rounded even when finally reported. A useful rule for rounding final results that will not be
used for further computation is to round all of the reported values to one or two significant digitsin the
total uncertainty, £, _ ,:}p. Thisis the convention for rounding that has been used in the tables

ﬂl.'rg,l-"
below.
Lower 95% Upper 95%
. . - - Prediction Prediction
U & Os G, ti—a/ze tl—a/200p Bound  Bound
25 106.0025 4.299099 1.1976162 4.462795 2.024394 9.034455 97.0 115.0
45 184.6053 4.299099 0.6803245 4.352596 2.024394 8.811369 175.8 1935
65 263.2081 4.299099 1.2441620 4.475510 2.024394 9.060197 254.1 272.3
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Lower
95%

Upper
95%

Prediction Prediction

Ty Ta U & 05 G,  ti_ajow ti—a/2e0p Bound  Bound
20 25 5586307 004341221 002840153 005187742 2000298 010377030 5.8 5,60
80 25 4998012 004341221 001217100 004508609 2000298 000018560  4.91 5.09
20 50 6.960607 004341221 0.01371149 004552609 2000298 000106573  6.87 7.05
80 50 5342600 004341221 0.01007761 0.04456656 2000298 0089146390  5.25 5.43
20 75 7521252 004341221 001205401 004505462 2000298 000012266  7.43 761
80 75 6220805 004341221 001330727 004540598 2000298 009082549  6.13 6.31

Simulation of many sets of datafrom a process model provides a good way to obtain a detailed
understanding of the probabilistic nature of the prediction intervals. The main advantage of using
simulation isthat it allows direct comparison of how prediction intervals constructed from alimited
amount of data relate to the measured values that are being estimated.

The plot below shows 95% prediction intervals computed from 50 independently generated data sets
that follow the same model as the data in the Pressure/ Temperature example. Random errors from the
normal distribution with a mean of zero and a known standard deviation are added to each set of true
temperatures and true pressures that lie on a perfect straight line to produce the simulated data. Then
each data set is used to compute a prediction interval for a newly observed pressure at a temperature of
65. The newly observed measurements, observed after making the prediction, are noted with an " X"
for each data set.
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From the plot it is easy to see that not all of the intervals contain the pressure values observed after the
prediction was made. Data set 4 produced an interval that did not capture the newly observed pressure
measurement at a temperature of 65. However, for 49 out of 50, or not much over 95% of the data sets,
the prediction intervals did capture the measured pressure. When the number of data sets was
increased to 5000, prediction intervals computed for 4734, or 94.68%, of the data sets covered the new
measured values. Finally, when the number of data sets was increased to 10000, 94.92% of the
confidence intervals computed covered the true average pressure. Thus, the simulation shows that
although any particular prediction interval might not cover its associated new measurement, in
repeated experiments this method produces intervals that contain the new measurements at the rate
specified by the user as the confidence level.

It is also interesting to compare these results to the anal ogous results for confidence intervals. Clearly
the most striking difference between the two plotsisin the sizes of the uncertainties. The uncertainties
for the prediction intervals are much larger because they must include the standard deviation of a
single new measurement, as well as the standard deviation of the estimated average response value.
The standard deviation of the estimated average response value is lower because alot of the random
error that isin each measurement cancels out when the data are used to estimate the unknown
parameters in the model. In fact, if as the sample size increases, the limit on the width of a confidence
interval approaches zero while the limit on the width of the prediction interval as the sample size

increases approaches 21 _, /2 . Understanding the different types of intervals and the bounds on

interval width can be important when planning an experiment that requires a result to have no more
than a specified level of uncertainty to have engineering value.

To summarize the interpretation of the probabilistic nature of confidence intervalsin words: in
independent, repeated experiments, 100{1 — ) % of theintervals will be expected cover their true
values, given that the assumptions needed for the construction of the intervals hold.

http://www.itl. nist.gov/div898/handbook/pmd/section5/pmd512.htm (4 of 5) [11/14/2003 5:50:49 PM]


http://www.itl.nist.gov/div898/handbook/pmd/section5/plots/mupt3_f.gif

4.5.1.2. How can | predict the value and and estimate the uncertainty of a single response?

NIST

T E—— [HOME [TOOLS & AIDS [SEARCH [BACK MEXT]|
SEMATECH

http://www.itl.nist.gov/div898/handbook/pmd/section5/pmd512.htm (5 of 5) [11/14/2003 5:50:49 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/

4.5.2. How can | use my process model for calibration?

P ENGINEERING STATISTICS HANDBOOK

|[HOME TOOLS & AIDS |[SEARCH [BACK NEXT]|

4. Process Modeling
4.5. Use and Interpretation of Process Models

4.5.2.How can | use my process model for
calibration?

Detailed This section details some of the different types of calibrations that can

Calibration be made using the various process model s whose devel opment was

Information  discussed in previous sections. Computational formulas or algorithms
are given for each different type of calibration, along with simulation
examples showing its probabilistic interpretation. An introduction to
calibration can be found in Section 4.1.3.2. A brief comparison of

calibration versus the other uses of process modelsis given in Section
4.1.3. Additiona information on calibration is available in Section 3 of
Chapter 2: Measurement Process Characteri zation.

Calibration 1. Single-Use Calibration Intervals
Procedures
MNIST
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4.5. Use and Interpretation of Process Models
4.5.2. How can | use my process model for calibration?

4.5.2.1.Single-Use Calibration Intervals

Calibration As mentioned in Section 1.3, the goal of calibration (also called inverse prediction by some
authors) isto quantitatively convert measurements made on one of two measurement scales to the
other measurement scale. Typically the two scales are not of equal importance, so the conversion
occurs in only one direction. The model fit to the data that relates the two measurement scales and
anew measurement made on the secondary scale provide the means for the conversion. The
results from the fit of the model also allow for computation of the associated uncertainty in the
estimate of the true value on the primary measurement scale. Just as for prediction, estimates of
both the value on the primary scale and its uncertainty are needed in order to make sound
engineering or scientific decisions or conclusions. Approximate confidence intervals for the true
value on the primary measurement scale are typically used to summarize the results
probabilistically. An example, which will help make the calibration process more concrete, is
given in Section 4.1.3.2. using thermocoupl e calibration data.

Calibration Like prediction estimates, calibration estimates can be computed relatively easily using the
Estimates regression equation. They are computed by setting a newly observed value of the response

variable, ’H*, which does not have an accompanying value of the predictor variable, equal to the
estimated regression function and solving for the unknown value of the predictor variable.
Depending on the complexity of the regression function, this may be done analytically, but
sometimes numerical methods are required. Fortunatel, the numerical methods needed are not
complicated, and once implemented are often easier to use than analytical methods, even for
simple regression functions.

Pressure/
Temperature

Example In the Pressure/Temperature example, pressure measurements could be used to measure the

temperature of the system by observing a new pressure value, setting it equal to the estimated
regression function,

Flr:3) = 7.74890 4 3.92014 * x

and solving for the temperature. If a pressure of 178 were measured, the associated temperature
would be estimated to be about 43.

178 = 7.74899 4 293014 + x

Il
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r = (178 —7.74899)/3.93014

= 43.319245

Although thisis a simple process for the straight-line model, note that even for this simple
regression function the estimate of the temperature is not linear in the parameters of the model.

Numerical To set this up to be solved numerically, the equation simply has to be set up in the form
Approach

178 — (7.74R00 + 2.0301d % x) = 0

and then the function of temperature (r) defined by the left-hand side of the equation can be used
as the argument in an arbitrary root-finding function. It istypically necessary to provide the
root-finding software with endpoints on opposite sides of the root. These can be obtained from a
plot of the calibration data and usually do not need to be very precise. In fact, it is often adequate
to simply set the endpoints equal to the range of the calibration data, since calibration functions
tend to be increasing or decreasing functions without local minima or maximain the range of the
data. For the pressure/temperature data, the endpoints used in the root-finding software could
even be set to values like -5 and 100, broader than the range of the data. This choice of end points
would even allow for extrapolation if new pressure values outside the range of the original
calibration data were observed.

Thermocouple  For the more realistic thermocouple calibration example, which iswell fit by a LOESS model that

Calibration does not require an explicit functional form, the numerical approach must be used to obtain
Example calibration estimates. The LOESS model is set up identically to the straight-line model for the
numerical solution, using the estimated regression function from the software used to fit the
model.
v — flz:8)=0

Again the function of temperature (r) on the left-hand side of the equation would be used as the
main argument in an arbitrary root-finding function. If for some reason f [:-: 5} were not

available in the software used to fit the model, it could always be created manually since LOESS
can ultimately be reduced to a series of weighted least squares fits. Based on the plot of the
thermocouple data, endpoints of 100 and 600 would probably work well for all calibration
estimates. Wider values for the endpoints are not useful here since extrapolations do not make
much sense for this type of local model.

Dataplot Since the verbal descriptions of these numerical techniques can be hard to follow, these ideas may
Code become clearer by looking at the actual Dataplot computer code for a quadratic calibration, which

can be found in the Load Cell Calibration case study. If you have downloaded Dataplot and
installed it, you can run the computations yourself.

http://www.itl.nist.gov/div898/handbook/pmd/section5/pmd521.htm (2 of 5) [11/14/2003 5:50:50 PM]


http://www.itl.nist.gov/div898/handbook/pmd/section6/ldcll/dpm61.htm

4.5.2.1. Single-Use Calibration Intervals

Calibration
Uncertainties

Confidence

Intervals for
the Example
Applications

Asin prediction, the data used to fit the process model can also be used to determine the
uncertainty of the calibration. Both the variation in the average response and in the new
observation of the response value need to be accounted for. Thisis similar to the uncertainty for
the prediction of a new measurement. In fact, approximate calibration confidence intervals are
actually computed by solving for the predictor variable value in the formulas for prediction
interval end points [Graybill (1976)]. Because o the standard deviation of the prediction of a

measured response, is afunction of the predictor variable, like the regression function itself, the
inversion of the prediction interval endpointsis usually messy. However, like the inversion of the
regression function to obtain estimates of the predictor variable, it can be easily solved
numerically.

The equations to be solved to obtain approximate lower and upper calibration confidence limits,
are, respectively,

— flr 8) + ti—ayou0s(x) =0

w2

and

Yy — .‘l|7- j,' - rl—-.i_'f.r-'ifpl:-f] =0

with r:}p denoting the estimated standard deviation of the prediction of a new measurement.

I [I 3:] and g, e both denoted as functions of the predictor variable, T, hereto makeit clear
that those terms must be written as functions of the unknown value of the predictor variable. The
left-hand sides of the two equations above are used as arguments in the root-finding software, just
asthe expression y — flxid) is used when computing the estimate of the predictor variable.
Confidence intervals for the true predictor variable values associated with the observed values of
pressure (178) and voltage (1522) are given in the table below for the Pressure/Temperature
example and the Thermocouple Calibration example, respectively. The approximate confidence
limits and estimated values of the predictor variables were obtained numerically in both cases.

Estimated
Lower 95% Predictor Upper 95%
. Confidence Variable Confidence
Example Uy Bound Value Bound

Pressure/Temperature 178 41.07564 43.31925 45.56146
Thermocouple Cdlibration 1522 553.0026 553.0187 553.0349
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Interpretation
of Calibration
Intervals

Confidence
Intervals
Computed
from 50 Sets
of Smulated
Data

Although calibration confidence intervals have some unique features, viewed as confidence
intervals, their interpretation is essentially analogous to that of confidence intervals for the true
average response. Namely, in repeated calibration experiments, when one calibration is made for
each set of data used to fit a calibration function and each single new observation of the response,

. I - "y r}__-'
then approximately 100(1 — @) 7% of the intervals computed as described above will capture
the true value of the predictor variable, which is a measurement on the primary measurement
scale.

The plot below shows 95% confidence intervals computed using 50 independently generated data
sets that follow the same model as the data in the Thermocouple calibration example. Random
errors from anormal distribution with a mean of zero and a known standard deviation are added
to each set of true temperatures and true voltages that follow a model that can be
well-approximated using LOESS to produce the simulated data. Then each data set and a newly
observed voltage measurement are used to compute a confidence interval for the true temperature
that produced the observed voltage. The dashed reference line marks the true temperature under
which the thermocouple measurements were made. It is easy to see that most of the intervals do
contain the true value. In 47 out of 50 data sets, or approximately 95%, the confidence intervals
covered the true temperature. When the number of data sets was increased to 5000, the
confidence intervals computed for 4657, or 93.14%, of the data sets covered the true temperature.
Finally, when the number of data sets was increased to 10000, 93.53% of the confidence intervals
computed covered the true temperature. While these intervals do not exactly attain their stated
coverage, as the confidence intervals for the average response do, the coverage is reasonably
close to the specified level and is probably adequate from a practical point of view.

55302 55308 55304 55305
L3

Estimaled Temparaiurs

55300 5530

Dxla Sei
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4. Process Modeling
4.5. Use and Interpretation of Process Models

4.5.3.How can | optimize my process using
the process model?

Detailed Process optimization using models fit to data collected using response
Information surface designsis primarily covered in Section 5.5.3 of Chapter 5:

on Process Process Improvement. In that section detailed information is given on

Optimization .y to determine the correct process inputs to hit atarget output value

or to maximize or minimize process output. Some background on the
use of process models for optimization can be found in Section 4.1.3.3
of this chapter, however, and information on the basic analysis of data
from optimization experiments is covered along with that of other types
of modelsin Section 4.1 through Section 4.4 of this chapter.

Contents of 1. Optimizing a Process
Chapter 5
Section 5.5.3.

1. Single response case
1. Path of stegpest ascent
Confidence region for search path

Choosing the step length

Optimization when there is adeguate quadratic fit

Effect of sampling error on optimal solution

o 0k~ WD

Optimization subject to experimental region
constraints

2. Multiple response case
1. Path of steepest ascent
2. Desirability function approach
3. Mathematical programming approach

NIST
SEMATECH
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4.6.Case Studies in Process Modeling

Detailed, The genera points of thefirst five sections are illustrated in this section
Realistic using data from physical science and engineering applications. Each
Examples example is presented step-by-step in the text and is often cross-linked

with the relevant sections of the chapter describing the analysisin
genera. Each analysis can also be repeated using a worksheet linked to
the appropriate Datapl ot macros. The worksheet is also linked to the
step-by-step analysis presented in the text for easy reference.

Contents: 1. Load Cell Calibration

Section 6

1.

=
©

11.

Background & Data

Selection of Initial Model

Model Fitting - Initial Model

Graphical Residual Analysis - Initial M odel

© 0 N o ok~ WD

| nterpretation of Numerical Output - Initial Model
Model Refinement

Model Fitting - Model #2

Graphical Residual Analysis- Model #2
Interpretation of Numerical Output - Model #2
Use of the Model for Calibration

Work this Example Y ourself

2. Alaska Pipeline Ultrasonic Calibration

1.

N o g bk~ w0 DN

Background and Data

Check for Batch Effect

Initial Linear Fit

Transformations to Improve Fit and Equalize Variances

Weighting to Improve Fit

Compare the Fits
Work This Example Y ourself
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3. Ultrasonic Reference Block Study

1.

o~ DN

6.

Background and Data

Initial Non-Linear Fit

Transformations to | mprove Fit

Weighting to Improve Fit

Compare the Fits
Work This Example Y ourself

4. Thermal Expansion of Copper Case Study

1.

© gk~ WD

NIST

SEMATECH  'MOME

Background and Data

Exact Rational Models

Initial Plot of Data

Fit Quadratic/Quadratic Model
Fit Cubic/Cubic Model

Work This Example Y ourself
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4. Process Modeling
4.6. Case Studies in Process Modeling

4.6.1.Load Cell Calibration

Quadratic This example illustrates the construction of alinear regression model for

Calibration load cell data that relates a known load applied to aload cell to the
deflection of the cell. The model isthen used to calibrate future cell
readings associated with loads of unknown magnitude.

1. Background & Data
2. Selection of Initial Model
3. Model Fitting - Initial Model
4. Graphical Residual Analysis - Initial Model
5. Interpretation of Numerical Output - Initial Model
6. Model Refinement
7. Model Fitting - Model #2
8. Graphical Residual Analysis- Model #2
9. Interpretation of Numerical Output - Model #2
10. Use of the Model for Calibration
11. Work This Example Y ourself
3 E:LSTTECH [HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]|
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.1. Load Cell Cdlibration

4.6.1.1.Background & Data

Description  The data collected in the calibration experiment consisted of a known

of Data load, applied to the load cell, and the corresponding deflection of the

Collection cell from its nominal position. Forty measurements were made over a
range of loads from 150,000 to 3,000,000 units. The data were collected
in two setsin order of increasing load. The systematic run order makes
it difficult to determine whether or not there was any drift in the load
cell or measuring equipment over time. Assuming there is no drift,
however, the experiment should provide a good description of the
relationship between the load applied to the cell and its response.

Resulting
Data Def | ecti on Load
0.11019 150000
0. 21956 300000
0. 32949 450000
0. 43899 600000
0. 54803 750000
0. 65694 900000
0. 76562 1050000
0. 87487 1200000
0. 98292 1350000
1.09146 1500000
1.20001 1650000
1.30822 1800000
1.41599 1950000
1.52399 2100000
1.63194 2250000
1.73947 2400000
1. 84646 2550000
1.95392 2700000
2.06128 2850000
2.16844 3000000
0. 11052 150000

http://www.itl.nist.gov/div898/handbook/pmd/section6/pmd611.htm (1 of 2) [11/14/2003 5:50:51 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm

4.6.1.1. Background & Data

22018
32939
43886
54798
65739
76596
87474
98300
09150
20004
30818
41613
52408
63159
73965
84696
95445
06177
16829
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300000

450000

600000

750000

900000
1050000
1200000
1350000
1500000
1650000
1800000
1950000
2100000
2250000
2400000
2550000
2700000
2850000
3000000
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4.6.1.2.Selection of Initial Model

Thefirst step in analyzing the datais to select a candidate model. In the case of a measurement
system like this one, afairly ssmple function should describe the relationship between the load

and the response of the load cell. One of the hallmarks of an effective measurement systemisa
straightforward link between the instrumental response and the property being quantified.

Plotting the data indicates that the hypothesized, simple relationship between load and deflection
is reasonable. The plot below shows the data. It indicates that a straight-line model islikely to fit

the data. It does not indicate any other problems, such as presence of outliers or nonconstant

Sart
Smple
Plot the
Data
standard deviation of the response.

Initial
Model: 37
Sraight |
Line

25

2 p—

Deflectlon
tn
|

TOOO000
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4. Process Modeling

4.6. Case Studies in Process Modeling

4.6.1. Load Cell Calibration

4.6.1.3. Model Fitting - Initial Model

Least
Sguares

Estimation

Datapl ot
Output

Using software for computing least squares parameter estimates, the straight-line
model,

D=+ 3L

iseasily fit to the data. The computer output from this process is shown below.
Before trying to interpret all of the numerical output, however, it is critical to check
that the assumptions underlying the parameter estimation are met reasonably well.
The next two sections show how the underlying assumptions about the data and
model are checked using graphical and numerical methods.

LEAST SQUARES PCLYNOM AL FI'T
SAMPLE SI ZE N
DEGREE

REPLI CATI ON CASE
REPL| CATI ON STANDARD DEVI ATI ON
REPL| CATI ON DEGREES OF FREEDOM
NUMBER OF DI STI NCT SUBSETS

40
1

0.2147264895D- 03
20
20

PARAVETER ESTI MATES  (APPROX. ST. DEV.) T VALUE
1 A0 0. 614969E- 02 (0. 7132E- 03) 8.6
2 Al 0. 722103E- 06 (0. 3969E- 09) 0. 18E+04

RESI DUAL STANDARD DEVI ATI ON 0. 0021712694

RESI DUAL DEGREES OF FREEDOM = 38
REPL| CATI ON STANDARD DEVI ATI ON = 0. 0002147265
REPLI CATI ON DEGREES OF FREEDOM = 20

LACK OF FIT F RATIO = 214. 7464 THE 100. 0000% PO NT OF
THE F DI STRIBUTION WTH 18 AND 20 DEGREES OF FREEDOM
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4. Process Modeling
4.6. Case Studiesin Process Modeling
4.6.1. Load Cell Cdlibration

4.6.1.4.Graphical Residual Analysis - Initial Model

Potentially After fitting a straight line to the data, many people like to check the quality of the fit with a plot
Misleading of the data overlaid with the estimated regression function. The plot below shows this for the load
Plot cell data. Based on this plot, there is no clear evidence of any deficiencies in the model.

3_

25 7

Deflectlon
th
|

[ ' [ ' [ ' [ ' [ ' [ ' [
L) S0 OO0 1500000 200 a0 250000 20O a0y
Laad

Avoiding the Thistype of overlaid plot is useful for showing the relationship between the data and the

Trap predicted values from the regression function; however, it can obscure important detail about the
model. Plots of the residuals, on the other hand, show this detail well, and should be used to
check the quality of the fit. Graphical analysis of the residuals is the single most important
technique for determining the need for model refinement or for verifying that the underlying
assumptions of the analysis are met.
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4.6.1.4. Graphical Residual Analysis - Initial Model

Hidden
Sructure
Revealed

Scale of Plot
Key

Residual plots of interest for thismodel include:
residual s versus the predictor variable

residual s versus the regression function values

residual run order plot

residual lag plot

histogram of the residuals

© o~ DB

normal probability plot

A plot of theresiduals versus load is shown below.

0.00:3

0.002

00071 .

Aesldualks

0.003

D004 '
| ]

D005

[ ' [ ' [ ' [ ' [ ' [ ' [
0 HO0OO0 1000000 1500000 2000000 2500000 000000
Load

The structure in the relationship between the residuals and the load clearly indicates that the
functional part of the model is misspecified. The ability of the residua plot to clearly show this
problem, while the plot of the data did not show it, is due to the difference in scale between the
plots. The curvature in the response is much smaller than the linear trend. Therefore the curvature
is hidden when the plot is viewed in the scale of the data. When the linear trend is subtracted,
however, asit isin the residual plot, the curvature stands out.

The plot of the residuals versus the predicted deflection values shows essentially the same
structure as the last plot of the residuals versus load. For more complicated models, however, this
plot can reveal problemsthat are not clear from plots of the residuals versus the predictor
variables.
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Structure 1 ',
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Predicted Values from the Straight-Line Model
Additional Further residual diagnostic plots are shown below. The plots include arun order plot, alag plot, a
Diagnostic histogram, and anormal probability plot. Shown in atwo-by-two array like this, these plots
Plots comprise a4-plot of the data that is very useful for checking the assumptions underlying the
model.
Dataplot
4plot
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The structure evident in these residual plots aso indicates potentia problems with different
aspects of the model. Under ideal circumstances, the plotsin the top row would not show any
systematic structure in the residuals. The histogram would have a symmetric, bell shape, and the
normal probability plot would be a straight line. Taken at face value, the structure seen here
indicates atime trend in the data, autocorrelation of the measurements, and a non-normal
distribution of the residuals.

Itislikely, however, that these plots will look fine once the function describing the systematic
relationship between load and deflection has been corrected. Problems with one aspect of a
regression model often show up in more than one type of residual plot. Thusthereis currently no
clear evidence from the 4-plot that the distribution of the residuals from an appropriate model
would be non-normal, or that there would be autocorrelation in the process, etc. If the 4-plot still
indicates these problems after the functional part of the model has been fixed, however, the
possibility that the problems are real would need to be addressed.
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4. Process Modeling

4.6. Case Studies in Process Modeling

4.6.1. Load Cell Calibration

4.6.1.5.

Lack-of-Fit
Satistic
Interpretable

Dataplot
Output

Function
Incorrect

Interpretation of Numerical Output - Initial
Model

The fact that the residual plots clearly indicate a problem with the specification of
the function describing the systematic variation in the data means that thereislittle
point in looking at most of the numerical results from the fit. However, since there
are replicate measurements in the data, the lack-of-fit test can also be used as part of
the model validation. The numerical results of the fit from Dataplot are list below.

LEAST SQUARES POLYNOM AL FI' T
SAMPLE SI ZE N = 40
DEGREE = 1
REPLI CATI ON CASE

REPLI CATI ON STANDARD DEVI ATI ON
REPLI CATI ON DEGREES OF FREEDOM
NUMBER OF DI STI NCT SUBSETS

0.2147264895D- 03
20
20

PARAMETER ESTI MATES ( APPROX. ST. DEV.) T VALUE

1 A0 0. 614969E- 02 (0. 7132E-03) 8.6

2 Al 0. 722103E- 06 (0. 3969E- 09) 0. 18E+04
RESI DUAL STANDARD DEVI ATI ON = 0. 0021712694
RESI DUAL DEGREES OF FREEDOM = 38

REPLI CATI ON STANDARD DEVI ATI ON = 0. 0002147265
REPLI CATI ON DEGREES OF FREEDOM = 20

LACK OF FIT F RATI O = 214. 7464 THE 100. 0000% PO NT OF
THE F DI STRI BUTI ON W TH 18 AND 20 DEGREES OF FREEDOM

The lack-of-fit test statistic is 214.7534, which also clearly indicates that the
functional part of the model is not right. The 95% cut-off point for the test is 2.15.
Any value greater than that indicates that the hypothesis of a straight-line model for
this data should be rejected.
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4.6.1.6. Model Refinement

After ruling out the straight line model for these data, the
would better describe the systematic variation in the data.

[EACK ~NEXT|

next task is to decide what function

Reviewing the plots of the residuals versus all potential predictor variables can offer insight into
selection of anew model, just as a plot of the data can aid in selection of an initial model.
Iterating through a series of models selected in this way will often lead to a function that

describes the data well.

Residual
Structure
Indicates
Quadratic

0.003

0.002

0.001 —

R==lduals

0.002

=0.003

-0.004 —

0.005

I
1000000

1500000 2000000 2500000 3000000

Load

The horseshoe-shaped structure in the plot of the residuals versus load suggests that a quadratic
polynomial might fit the data well. Since that is also the ssmplest polynomia model, after a

straight line, it is the next function to consider.
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4.6.1.7.Model Fitting - Model #2

New Based on the residual plots, the function used to describe the data should be the
Function quadratic polynomial:

D=3+ 3L+ 3L

The computer output from this process is shown below. Asfor the straight-line
model, however, it isimportant to check that the assumptions underlying the
parameter estimation are met before trying to interpret the numerical output. The
steps used to complete the graphical residual analysis are essentialy identical to
those used for the previous model.

Dataplot

Output LEAST SQUARES POLYNOM AL FIT
for SAMPLE SI ZE N = 40
Quadratic DEGREE = 2
Fit REPLI CATI ON CASE

REPLI CATI ON STANDARD DEVI ATI ON
REPLI CATI ON DEGREES OF FREEDOM
NUVBER OF DI STI NCT SUBSETS

0.2147264895D- 03
20
20

PARAVETER ESTI MATES (APPROX. ST. DEV.) T VALUE

1 A0 0. 673618E- 03 (0. 1079E- 03) 6.2
2 Al 0. 732059E- 06 (0. 1578E- 09) 0. 46E+04
3 A2  -0.316081E- 14 (0. 4867E- 16) - 65.

RESI DUAL STANDARD DEVI ATI ON
RESI DUAL DEGREES OF FREEDOM 37
REPLI CATI ON STANDARD DEVI ATI ON 0. 0002147265
REPLI CATI ON DEGREES OF FREEDOM = 20
LACK OF FIT F RATIO = 0. 8107 = THE 33. 3818% PO NT OF
THE F DI STRI BUTI ON W TH 17 AND 20 DEGREES OF FREEDOM

0. 0002051768
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4.6. Case Studiesin Process Modeling
4.6.1. Load Cell Calibration

4.6.1.8. Graphical Residual Analysis - Model #2

The data with a quadratic estimated regression function and the residual plots are shown below.

Compare
to Initial 37
Model i
258
2 p—

Deflection
tn
|

1_
R
ﬂ_
[ ' [ ' [ ' [ ' I ' [ ' [
O R0 OO0 1500000 2000000 2500000 OOOOC0
Load

Thisplot isamost identical to the analogous plot for the straight-line model, again illustrating the
lack of detail in the plot due to the scale. In this case, however, the residua plots will show that
the model doesfit well.
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4.6.1.8. Graphical Residual Analysis - Model #2
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The residuals randomly scattered around zero, indicate that the quadratic is a good function to
describe these data. There is also no indication of non-constant variability over the range of loads.
Plot Also
Indicates
Model
OK
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This plot also looks good. There is no evidence of changesin variability across the range of
deflection.

No

Problems
| ndicated
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All of these residual plots have become satisfactory by simply by changing the functional form of
the model. Thereis no evidence in the run order plot of any time dependence in the measurement
process, and the lag plot suggests that the errors are independent. The histogram and normal
probability plot suggest that the random errors affecting the measurement process are normally

distributed.
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4. Process Modeling

4.6. Case Studies in Process Modeling

4.6.1. Load Cell Calibration

4.6.1.9.Interpretation of Numerical Output -

Model #2
Quadratic  The numerical results from the fit are shown below. For the quadratic model, the
Confirmed  lack-of-fit test statistic is 0.8107. The fact that the test statistic is approximately one
indicates there is no evidence to support a claim that the functional part of the model
does not fit the data. The test statistic would have had to have been greater than 2.17
to regject the hypothesis that the quadratic model is correct.
Datapl ot
Output LEAST SQUARES PCLYNOM AL FIT
SAMPLE SI ZE N = 40
DEGREE = 2
REPLI CATI ON CASE
REPLI CATI ON STANDARD DEVI ATI ON = 0.2147264895D- 03
REPLI CATI ON DEGREES OF FREEDOM = 20
NUVBER OF DI STI NCT SUBSETS = 20
PARAMVETER ESTI MATES (APPROX. ST. DEV.) T VALUE
1 A0 0. 673618E- 03 (0.1079E- 03) 6.2
2 Al 0. 732059E- 06 (0. 1578E- 09) 0. 46E+04
3 A2 -0. 316081E- 14 (0. 4867E- 16) - 65.
RESI DUAL STANDARD DEVI ATI ON = 0. 0002051768
RESI DUAL DEGREES OF FREEDOM = 37
REPLI CATI ON STANDARD DEVI ATI ON = 0. 0002147265
REPLI CATI ON DEGREES OF FREEDOM = 20
LACK OF FIT F RATIO = 0. 8107 = THE 33. 3818% PO NT OF
THE F DI STRIBUTION WTH 17 AND 20 DEGREES OF FREEDOM
Regresson  From the numerical output, we can also find the regression function that will be used
Function for the calibration. The function, with its estimated parameters, is
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D= f(L:3) = 0.673618 x 1073
+ (0.732059 x 107°)L
— (D.316081 x 10~ ) L2

All of the parameters are significantly different from zero, as indicated by the
associated t statistics. The 97.5% cut-off for the t distribution with 37 degrees of
freedom is 2.026. Since all of thet values are well above this cut-off, we can safely
conclude that none of the estimated parametersis equal to zero.
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4.6.1.10. Use of the Model for Calibration
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4.6.1.10.Use of the Model for Calibration

Using the Now that a good model has been found for these data, it can be used to estimate |oad values for

Model new measurements of deflection. For example, suppose a new deflection value of 1.239722 is
observed. The regression function can be solved for load to determine an estimated load value
without having to observe it directly. The plot below illustrates the calibration process

graphically.
Calibration
3 —
25
2 —
- -
-
2 15
g Deflection = 1.239723
1 p—
i 5
B
1
05 :3
w3
a ¥
I ' I ' I ' I ' I ' I ' I
0 500000 1000000 1500000 2000000 2600000 3000000
Load
Finding From the plot, it is clear that the load that produced the deflection of 1.239722 should be about
Bounds on 1,750,000, and would certainly lie between 1,500,000 and 2,000,000. This rough estimate of the
the Load possible load range will be used to compute the load estimate numerically.
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4.6.1.10. Use of the Model for Calibration

Obtaining
a
Numerical
Calibration
Value

Solving the

Regression
Equation

Which
Solution?

+/- What?

To solve for the numerical estimate of the load associated with the observed deflection, the
observed value substituting in the regression function and the equation is solved for |oad.
Typically thiswill be done using aroot finding procedure in a statistical or mathematical
package. That is one reason why rough bounds on the value of the load to be estimated are
needed.

1.239722 = O0.673618 x 107
+ (0.732050 x 10~%)L
— (0.316081 x 107'#)L?
1
L = 1705106

Even though the rough estimate of the load associated with an observed deflection is not
necessary to solve the equation, the other reason is to determine which solution to the equation is
correct, if there are multiple solutions. The quadratic calibration equation, in fact, has two
solutions. As we saw from the plot on the previous page, however, thereisreally no confusion
over which root of the quadratic function is the correct load. Essentialy, the load value must be
between 150,000 and 3,000,000 for this problem. The other root of the regression equation and
the new deflection value correspond to aload of over 229,899,600. L ooking at the data at hand, it
is safe to assume that aload of 229,899,600 would yield a deflection much greater than 1.24.

Thefinal step in the calibration process, after determining the estimated load associated with the
observed deflection, isto compute an uncertainty or confidence interval for the load. A single-use

95% confidence interval for the load, is obtained by inverting the formulas for the upper and
lower bounds of a 95% prediction interval for a new deflection value. These inequalities, shown

below, are usually solved numerically, just as the calibration equation was, to find the end points
of the confidence interval. For some models, including this one, the solution could actually be
obtained algebraically, but it is easier to let the computer do the work using a generic algorithm.

1.239722 > f(L: 3) +(0.975,37)5,(L: 3)
it
L ~ 1704513
1.239722 < f(L:3)— #(0.975,37)6,(L: 3)
It
L < 1705607

The three terms on the right-hand side of each inequality are the regression function ( f ), a
t-distribution multiplier, and the standard deviation of a new measurement from the process (r:'rp).
Regression software often provides convenient methods for computing these quantities for
arbitrary values of the predictor variables, which can make computation of the confidence interval
end points easier. Although thisinterval is not symmetric mathematically, the asymmetry is very
small, so for al practical purposes, theinterval can be written as
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4.6.1.11. Work This Example Yourself
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4.6.1.11.Work This Example Yourself

View This page allows you to repeat the analysis outlined in the case study
Dataplot description on the previous page using Dataplot, if you have

Macro for downloaded and installed it. Output from each analysis step below will
this Case be displayed in one or more of the Dataplot windows. The four main
Sudy windows are the Output window, the Graphics window, the Command

History window and the Data Sheet window. Across the top of the main
windows there are menus for executing Dataplot commands. Across the
bottom is a command entry window where commands can be typed in.

Data Analysis Steps

Results and Conclusions

Click on the links below to start Dataplot and run this
case study yourself. Each step may use results from
previous steps, so please be patient. Wait until the
software verifies that the current step is complete
before clicking on the next step.

The links in this column will connect you with more detailed
information about each analysis step from the case study
description.

1. Get set up and started.

1. Read in the data.

1. You have read 2 colums of nunbers

into Dataplot, variables Deflection

and Load.

2. Fit and validate initial nodel.

1. Plot deflection vs. | oad.

2. Fit a straight-1line nodel
to the data.

3. Plot the predicted val ues

1. Based on the plot, a straight-line

nodel shoul d describe the data well.

2. The straight-line fit was carried

out. Before trying to interpret the

nuneri cal output, do a graphical

resi dual anal ysi s.

3. The superposition of the predicted
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4.6.1.11. Work This Example Yourself

fromthe nodel and the
data on the sanme plot.

4. Plot the residuals vs.
| oad.

5. Plot the residuals vs. the
predi cted val ues.

6. Make a 4-plot of the
resi dual s.

7. Refer to the nunerical output

and observed val ues suggests the

nodel is ok.

The residuals are not random

indicating that a straight Iine

i s not adequate.

This plot echos the information in

t he previous plot.

All four plots indicate probl ens

with the nodel.

fromthe fit.

The large | ack-of -fit F statistic

(>214) confirns that the straight-
| i ne nodel is inadequate.

3. Fit and validate refined nodel.

1. Refer to the plot of the
residual s vs. | oad.

2. Fit a guadratic nodel to
t he dat a.

3. Plot the predicted val ues
fromthe nodel and the
data on the sane plot.

4. Plot the residuals vs. | oad.

5. Plot the residuals vs. the
predi ct ed val ues.

6. Do a 4-plot of the
resi dual s.

7. Refer to the nunerica
output fromthe fit.

The structure in the plot indicates

a quadratic nodel would better
descri be the data.

The quadratic fit was carried out.

Renenber to do the graphica

residual analysis before trying to

i nterpret the nunerical output.

The superposition of the predicted

and observed val ues agai n suggests

the nodel is ok.

The residuals appear random

suggesting the quadratic nodel is ok.

The plot of the residuals vs. the

predi cted val ues al so suggests the

quadratic nodel is ok

None of these plots indicates a

problemw th the nodel.

The small | ack-of-fit F statistic

(<1) confirns that the quadratic

nodel fits the data.
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4.6.1.11. Work This Example Yourself

4. Use the npdel to nake a cali brated
nmeasur enent .

The new deflection is associated with

an _unobserved and unknown | oad.

Solving the calibration equation

vields the | oad val ue w thout having

to observe it.

1. Observe a new defl ection 1.
val ue.

2. Deternine the associ ated 2.
| oad.

3. Conmpute the uncertainty of 3.

Computing a confidence interval for

the | oad estinate.

the | oad value |lets us judge the

range of plausible |oad val ues,

since we know neasur enent noi se

affects the process.
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4.6.2. Alaska Pipeline
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4. Process Modeling
4.6. Case Studies in Process Modeling

4.6.2.Alaska Pipeline

Non-Homogeneous  This example illustrates the construction of alinear regression

Variances model for Alaska pipeline ultrasonic calibration data. This case
study demonstrates the use of transformations and weighted fits to
deal with the violation of the assumption of constant standard
deviations for the random errors. This assumption is also called

homogeneous variances for the errors.

Background and Data

Check for a Batch Effect

Fit Initial Model

Transformations to Improve Fit and Equalize Variances

Welghting to |mprove Fit

Compare the Fits
Work This Example Y ourself

N o gk~ 0w DR
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4.6.2.1. Background and Data
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4. Process Modeling
4.6. Case Studies in Process Modeling
4.6.2. Alaska Pipeline

4.6.2.1.Background and Data

Description  The Alaska pipeline data consists of in-field ultrasonic measurements of

of Data the depths of defectsin the Alaska pipeline. The depth of the defects

Collection were then re-measured in the laboratory. These measurements were
performed in six different batches.

The datawere analyzed to calibrate the bias of the field measurements
relative to the laboratory measurements. In this analysis, the field
measurement is the response variable and the laboratory measurement is
the predictor variable.

These data were provided by Harry Berger, who was at thetime a
scientist for the Office of the Director of the Institute of Materials
Research (now the Materials Science and Engineering Laboratory) of
NIST. These datawere used for a study conducted for the Materials
Transportation Bureau of the U.S. Department of Transportation.

Resulting
Data Field Lab
Def ect Def ect
Size Size Bat ch
18 20. 2 1
38 56.0 1
15 12.5 1
20 21.2 1
18 15.5 1
36 39.0 1
20 21.0 1
43 38.2 1
45 55.6 1
65 81.9 1
43 39.5 1
38 56. 4 1
33 40.5 1
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4.6.2.1. Background and Data

10
50
10
50
15
53
60
18
38
15
20
18
36
20
43
45
65
43
38
33
10
50
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50
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15
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15
18
11
35
20
40
50
36
50
38
10
75
10
85
13
50
58
58
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81.
13.
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56.
80.
20.
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12.
19.
15.
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19.
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38.
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38.
12.
80.
12.
80.
20.
55.
19.
55.
12.
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11.
38.
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38.
55.
38.
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38.
12.
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11.
80.
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55.
80.
80.
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48
12
63
10
63
13
28
35
63
13
45

9
20
18
35
20
38
50
70
40
21
19
10
33
16

5
32
23
30
45
33
25
12
53
36

5
63
43
25
73
45
52

9
30
22
56

55.
15.
81.
12.
81.
12.
38.
54.
79.
18.
55.
11.
19.
15.
37.
19.
37.
55.
80.
37.
15.
23.

9.
40.
17.

4.
36.
26.
30.
50.
30.
25.
13.
58.
40.

6.
72.
38.
19.
81.
77.
54.

6.
32.
19.
58.
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15 12. 9 6
45 49.0 6
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4.6.2.2. Check for Batch Effect
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4. Process Modeling
4.6. Case Studiesin Process Modeling

4.6.2. Alaska Pipeline

4.6.2.2.Check for Batch Effect

Plot of Raw Aswith any regression problem, it is always a good ideato plot the raw datafirst. The following
Data is ascatter plot of the raw data

Alaska Pipeline Ultrasonic Calibration Data

a = 8 W0
2 g @ 9
' e .
-
CRL I

&n
=

Field Detect Size
[ i
= =
1 I 1 I i I
|

M3
=
]

-
=]
[
s
P
B
L
E

=
|
]
[

r 1 1T " 1T 1T 1T "7 71T 71T "1
0 10 20 30 40 50 70 80 90
Lab Defect Size

This scatter plot showsthat a straight line fit isagood initial candidate model for these data.

Plot by Batch  These data were collected in six distinct batches. Thefirst step in the analysisisto determine if
there is a batch effect.

In this case, the scientist was not inherently interested in the batch. That is, batch is a nuisance
factor and, if reasonable, we would like to analyze the data as if it came from a single batch.
However, we need to know that thisis, in fact, a reasonable assumption to make.
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4.6.2.2. Check for Batch Effect

Conditional We first generate a conditional plot where we condition on the batch.
Plot
Lab Defect Size
I:II 1.':' Etl :II -!l:l *Il E.l'.'l TF' E'.':' EI.I'.'I
ad1 BATCH =1 BATCH =2 BATCH =3 .
a0
X
m.
4 X X
in 9] X x
T sa1 x X x X
X X X
3 % ¥
i 207
m.
¥ ] wd
101 X X X
n-
BATCH=4 BATCH =5 BATCH =8 ran
raa
X X 70
h-d X
x &0 -ﬁ
X X s @
x X X X 'E
% 2
X . it x X rag 2
. X } X F20
f X
P X X Al
X
ra
0 10 20 30 40 50 &) 70 80 9 0 10 20 30 40 50 80 70 B0 @0
Lab D=f=ct Size Lab Defect S e

This conditional plot shows a scatter plot for each of the six batches on a single page. Each of
these plots shows a similar pattern.

Linear We can follow up the conditional plot with alinear correlation plot, alinear intercept plot, a
Correlation linear slope plot, and alinear residual standard deviation plot. These four plots show the

and Related correlation, the intercept and slope from alinear fit, and the residual standard deviation for linear
Plots fits applied to each batch. These plots show how alinear fit performs across the six batches.
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4.6.2.2. Check for Batch Effect

Carmelation Imtercept
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Thelinear correlation plot (upper left), which shows the correlation between field and lab defect
Sizes versus the batch, indicates that batch six has a somewhat stronger linear relationship
between the measurements than the other batches do. Thisis also reflected in the significantly
lower residual standard deviation for batch six shown in the residual standard deviation plot
(lower right), which shows the residual standard deviation versus batch. The slopes all lie within
arange of 0.6 to 0.9 in the linear slope plot (lower left) and the intercepts all lie between 2 and 8
in the linear intercept plot (upper right).

Treat BATCH  These summary plots, in conjunction with the conditional plot above, show that treating the data

as asasingle batch is a reasonable assumption to make. None of the batches behaves badly
Homogeneous compared to the others and none of the batches requires a significantly different fit from the
others.

These two plots provide agood pair. The plot of the fit statistics allows quick and convenient
comparisons of the overall fits. However, the conditional plot can revea details that may be
hidden in the summary plots. For example, we can more readily determine the existence of
clusters of points and outliers, curvature in the data, and other similar features.

Based on these plots we will ignore the BATCH variable for the remaining analysis.
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4.6.2.3. Initial Linear Fit
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4.6. Case Studies in Process Modeling

4.6.2. Alaska Pipeline

4.6.2.3.Initial Linear Fit

Linear Fit Output

6-Plot for Modél
Validation

Based on theinitia plot of the data, we first fit a straight-line model to the data.
The following fit output was generated by Dataplot (it has been edited slightly for display).

LEAST SQUARES MULTI LI NEAR FI T
SAMPLE SI ZE N 107
NUMBER OF VARI ABLES 1
REPLI CATI ON CASE

REPLI CATI ON STANDARD DEVI ATI ON

0.6112687111D+01

REPL| CATI ON DEGREES OF FREEDOM = 29
NUVMBER OF DI STI NCT SUBSETS = 78
PARAVETER ESTI MATES (APPROX. ST. DEV.) T VALUE
1 A0 4. 99368 ( 1.126 ) 4. 4
2 Al LAB 0.731111 (0. 2455E- 01) 30.

6. 0809240341
105
6.1126871109

RESI DUAL STANDARD DEVI ATl ON
RESI DUAL DEGREES OF FREEDOM
REPLI CATI ON STANDARD DEVI ATI ON

REPL| CATI ON DEGREES OF FREEDOM = 29
LACK OF FIT F RATIO = 0. 9857
= THE 46.3056% PO NT OF THE
F DI STRI BUTI ON W TH 76 AND 29 DEGREES OF FREEDOM

The intercept parameter is estimated to be 4.99 and the slope parameter is estimated to be 0.73.
Both parameters are statistically significant.

When there is asingle independent variable, the 6-plot provides a convenient method for initial
model validation.
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4.6.2.3. Initial Linear Fit
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The basic assumptions for regression models are that the errors are random observations from a
normal distribution with mean of zero and constant standard deviation (or variance).

The plots on the first row show that the residuals have increasing variance as the value of the
independent variable (lab) increases in value. Thisindicates that the assumption of constant
standard deviation, or homogeneity of variances, is violated.

In order to see this more clearly, we will generate full- size plots of the predicted values with the
data and the residuals against the independent variable.

Plot of Predicted
Values with
Original Data
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4.6.2.3. Initial Linear Fit

Alaska Pipeline Ultrasonic Calibration Data
with Unweighted Line
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This plot shows more clearly that the assumption of homogeneous variances for the errors may be
violated.

Plot of Residual
Values Against
Independent
Variable
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4.6.2.3. Initial Linear Fit

Non-Homogeneous
Variances

NIST
SEMATECH

Alaska Pipeline Data Residuals - Unweighted Fit

Residuals
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This plot also shows more clearly that the assumption of homogeneous variances is violated. This
assumption, along with the assumption of constant location, are typically easiest to see on this
plot.

Because the last plot shows that the variances may differ more that slightly, we will address this
issue by transforming the data or using weighted least squares.
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4.6.2.4. Transformations to Improve Fit and Equalize Variances
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4. Process Modeling
4.6. Case Studiesin Process Modeling

4.6.2. Alaska Pipeline

4.6.2.4. Transformations to Improve Fit and Equalize
Variances

Transformations  In regression modeling, we often apply transformations to achieve the following two goals:
1. to satisfy the homogeneity of variances assumption for the errors.
2. tolinearize the fit as much as possible.

Some care and judgment is required in that these two goals can conflict. We generally try to
achieve homogeneous variances first and then address the issue of trying to linearize the fit.

Plot of Common  Thefirst step isto try transforming the response variable to find a tranformation that will equalize
Transformations  the variances. In practice, the square root, In, and reciprocal transformations often work well for
to Obtain this purpose. We will try these first.

Homogeneous

Variances
TRANSFORMATIONS OF RESPONSE VARIABLE
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In examining these plots, we are looking for the plot that shows the most constant variability
across the horizontal range of the plot.

This plot indicates that the In transformation is a good candidate model for achieving the most
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homogeneous variances.

Plot of Common  One problem with applying the above transformation is that the plot indicates that a straight-line

Transformations  fit will no longer be an adequate model for the data. We address this problem by attempting to find

toLinearizethe  atransformation of the predictor variable that will result in the most linear fit. In practice, the

Fit square root, In, and reciprocal transformations often work well for this purpose. We will try these
first.

TRANSFORMATIONS OF PREDICTOR VARIABLE
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This plot shows that the In transformation of the predictor variable is a good candidate model.

Box-Cox
Linearity Plot

The previous step can be approached more formally by the use of the Box-Cox linearity plot. The

¢ value on the x axis corresponding to the maximum correlation value on the y axisindicates the
power transformation that yields the most linear fit.
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In-In Fit
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This plot indicates that avalue of -0.1 achieves the most linear fit.

In practice, for ease of interpretation, we often prefer to use acommon transformation, such as the
In or square root, rather than the value that yields the mathematical maximum. However, the
Box-Cox linearity plot still indicates whether our choice is areasonable one. That is, we might
sacrifice asmall amount of linearity in the fit to have a ssmpler model.

In this case, avalue of 0.0 would indicate a In transformation. Although the optimal value from
the plot is-0.1, the plot indicates that any value between -0.2 and 0.2 will yield fairly similar
results. For that reason, we choose to stick with the common In transformation.

Based on the above plots, we choose to fit aIn-In model. Dataplot generated the following output
for thismodel (it is edited slightly for display).

LEAST SQUARES MULTI LI NEAR FI'T
SAMPLE SI ZE N 107
NUMBER OF VARI ABLES 1
REPLI CATI ON CASE

REPLI CATI ON STANDARD DEVI ATI ON

0. 1369758099D+00

REPLI CATI ON DEGREES OF FREEDOM = 29
NUMBER OF DI STI NCT SUBSETS = 78
PARAMETER ESTI MATES (APPROX. ST. DEV.) T VALUE
1 A0 0. 281384 (0. 8093E-01) 3.5
2 Al XTEMP 0. 885175 (0. 2302E-01) 38.
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Plot of
Predicted
Values

0. 1682604253
105
0. 1369758099

RESI DUAL STANDARD DEVI ATl ON
RESI DUAL DEGREES OF FREEDOM
REPLI CATI ON STANDARD DEVI ATl ON

REPLI CATI ON DEGREES OF FREEDOM = 29
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F DI STRI BUTION W TH 76 AND 29 DEGREES OF FREEDOM

Note that although the residual standard deviation is significantly lower than it was for the original
fit, we cannot compare them directly since the fits were performed on different scales.

Transtormed Alaska Pipeline Data with Fit
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The plot of the predicted values with the transformed data indicates a good fit. In addition, the
variability of the data across the horizontal range of the plot seemsrelatively constant.
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